Skip to main content

Aromatase Overexpression: Effect of Tissue Estrogen on Phenotypic and Biochemical Changes in Aromatase Transgenic Mice

  • Chapter
  • 600 Accesses

Concluding Remarks

Studies summarized herein demonstrate that overexpression of ARO leads to in increased tissue estrogenic activity, induction of MG hyperplastic and dysplastic lesions, gynecomastia, and testicular cancer in male ARO transgenic mice. The preneoplastic lesions induced due to increased tissue estrogenic activity are susceptible to carcinogens. The ARO overexpression-induced MG changes were inhibited with very low letrazole doses, an ARO inhibitor without any effect on normal physiology. The potential clinical importance of this intracrine growth support may provide future clinical and laboratory investigations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris JR, Lippman ME, Vernonesi U, et al (1992) Breast Cancer. N Engl J Med 327:319–328; 390–398; and 473–480.

    Article  PubMed  CAS  Google Scholar 

  2. Santen RJ, Santner SJ, Pauley RJ, et al (1997) Estrogen production via the aromatase enzyme in breast cancer carcinoma: which cell type is responsible? J Steroid Biochem Mol Biol 61:267–271.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control in normal human breast proliferation. J Mammary Gland Biol Neoplasia 3:23–35.

    Article  PubMed  CAS  Google Scholar 

  4. Russo IH, Russo J (1998) Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia 3:49–60.

    Article  PubMed  CAS  Google Scholar 

  5. Schroeder JA, Lee DC (1997) Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 2:119–129.

    Article  PubMed  CAS  Google Scholar 

  6. Yarden RI, Lauber AH, El-Ashry D, et al (1996) Bimodal regulation of epidermal growth factor receptor by estrogen in breast cancer cells. Endocrinology 137:2739–2747.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura J, Savinov A, Lu Q, et al (1996) Estrogen regulated vascular endothelial growth/permeability factor expression in 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors. Endocrinology 137:5589–5596.

    Article  PubMed  CAS  Google Scholar 

  8. Sicinski P, Donaher JL, Parker SB, et al (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.

    Article  PubMed  CAS  Google Scholar 

  9. Siiteri PK (1982) Review of studies on estrogen biosynthesis in the human. Cancer Res 42:3269s–3275s.

    PubMed  CAS  Google Scholar 

  10. Brodie AMH, Santen RJ (1994) Aromatase and its inhibitors in breast cancer—overview and perspective. Breast Cancer Res Treat 30:1–6.

    Article  PubMed  CAS  Google Scholar 

  11. Miller WR, O’Neill J (1976) Oestradiol synthesis from C19 steroids by human breast cancers. Br J Cancer 33:116–118.

    PubMed  CAS  Google Scholar 

  12. Tekmal RR, Ramachandra N, Gubba S, et al (1996) Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res 56:3180–3185.

    PubMed  CAS  Google Scholar 

  13. Kirma N, Gill K, Mandava U, et al (2001) Overexpression of aromatase leads to hyperplasia and changes in the expression of genes involved in apoptosis, cell cycle, growth and tumor suppressor functions in the mammary glands of transgenic. Cancer Res 61:1910–1918.

    PubMed  CAS  Google Scholar 

  14. Polyak K, Kato J, Solomon MJ, et al (1994) p27kip1, a cyclin-CdK inhibitor, links transforming growth factor-C and contact inhibition to cell cycle arrest. Genes Develop 8:9–22.

    PubMed  CAS  Google Scholar 

  15. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-CdK protein kinase activity, is related to p21. Cell 78:67–74.

    Article  PubMed  CAS  Google Scholar 

  16. Hartsough MT, Mulder KM (1997) Transforming growth factor-β signaling in epithelial cells. Pharmacol Ther 75:21–41.

    Article  PubMed  CAS  Google Scholar 

  17. Vidal A, Koff A (2000) Cell-cycle inhibitors: three families united by a common cause. Gene 247:1–15.

    Article  PubMed  CAS  Google Scholar 

  18. Prall OW, Sarcevic P, Musgrove EA, et al (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased Cyclin D1 expression and decreased Cyclin-dependent kinase inhibitor association with Cyclin E-Cdk2. J Biol Chem 272:10882–10894.

    Article  PubMed  CAS  Google Scholar 

  19. Romagnolo D, Annab AA, Thompson TE, et al (1998) Estrogen upregulation of BRCA1 expression with no effect of localization. Mol Carcinog 22:102–109.

    Article  PubMed  CAS  Google Scholar 

  20. Bennet LM, McAllister KA, Malphurs J, et al (2000) Mice heterozygous for a BRCA1 and BRCA2 mutation display distinct mammary gland and ovarian phenotypes in response to Diethylstilbestrol. Cancer Res 60:3461–3469.

    Google Scholar 

  21. Keshava N, Mandava U, Kirma N, et al (2001) Acceleration of mammary neoplasia in aromatase transgenic mice by 7, 12-dimethylbenz(a)anthracene. Cancer Lett 167:125–133.

    Article  PubMed  CAS  Google Scholar 

  22. Kirma N, Mandava U, Gill K, et al (2001) Synergistic action of growth factors with breast tissue estrogen: Down regulation TFG, EGF, and EGFR in aromatase x TFG cross. J Steroid Biochem Mol Biol 78:419–426.

    Article  PubMed  CAS  Google Scholar 

  23. Sandgren EP, Luetteke NC, Palmiter RD, et al (1990) Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61:1121–1135.

    Article  PubMed  CAS  Google Scholar 

  24. Fox SB, Harris AL (1997) The epidermal growth factor receptor in breast cancer. J Mammary Gland Biol Neopl 2:131–141.

    Article  CAS  Google Scholar 

  25. Lupulescu A (1983) Hormones and Carcinogenesis. New York: Praeger Scientific, 89–144.

    Google Scholar 

  26. Yager JD (2000) Endogenous estrogens as carcinogens through metabolic conversion. J Natl Cancer Inst Monogr 27:67–73.

    PubMed  CAS  Google Scholar 

  27. Cavlieri E, Frenkel K, Liehr JG, et al (2000) Estrogens as endogenous genotoxic agents-DNA adducts and mutations. J Natl Cancer Inst Monogr 27:75–94.

    Google Scholar 

  28. Jefcoate CR, Liehr JG, Santen R, et al (2000) Tissue-specific synthesis and oxidative metabolism of estrogen. J Natl Cancer Inst Monogr 27:95–112.

    PubMed  CAS  Google Scholar 

  29. Todorovic R, Ariese F, Devanesan P, et al (1997) Determination of benzo[a]anthracene-DNA adducts formed in rat mammary glands. Chem Res Toxicol 10:941–947.

    Article  PubMed  CAS  Google Scholar 

  30. Trombino AF, Near RI, Matulka RA, et al (2000) Expression of aryl hydrocarbon receptor/transcription factor (AhR) and AhR-regulated CYP1 gene transcripts in a rat model of mammary tumorigenesis. Breast Cancer Res Treat 63:117–131.

    Article  PubMed  CAS  Google Scholar 

  31. Gill K, Kirma N, Tekmal RR (2001) Overexpression of aromatase in transgenic male mice results in gynecomastia and other biochemical changes in mammary glands. J Steroid Biochem Mol Biol 77:13–18.

    Article  PubMed  CAS  Google Scholar 

  32. Fowler K, Gill K, Kirma N, et al (2000) Overexpression of aromatase leads to development of testicular Leydig cell tumors: An animal model for hormone-mediated testicular cancer. Am J Pathol 156:347–353.

    PubMed  CAS  Google Scholar 

  33. Hawkins A, Inkster S (1993) Aromatase in the human testis. J Steroid Biochem Mol Biol 44:549–555.

    Article  Google Scholar 

  34. Payne AH, Perkins LM, Georgiou M, et al (1987) Intratesticular site of aromatase activity and possible function of testicular estradiol. Steroids 50:435–448.

    Article  PubMed  CAS  Google Scholar 

  35. Berensztein E, Belgorosky A, de Davila MT, et al (1995) Testicular steroid biosynthesis in a boy with large cell calcifying sertoli cell tumor producing prepubertal gynecomastia. Steroids 60:220–225.

    Article  PubMed  CAS  Google Scholar 

  36. Vakensi P, Coussieu C, Pauwles A, et al (1987) Feminizing Leydig cell tumor: endocrine and incubation studies. J Endocrinol Invest 10:187–193.

    Google Scholar 

  37. Fisher CR, Graves KH, Parlow AF, et al (1998) Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 95:6965–6970.

    Article  PubMed  CAS  Google Scholar 

  38. Pestell RG, Albanese C, Reutens AT, et al (1999) The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocrine Reviews 20:501–534.

    Article  PubMed  CAS  Google Scholar 

  39. Prall OWJ, Sarcevic P, Musgrove EA, et al (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased Cyclin D1 expression and decreased Cyclin-dependent kinase inhibitor association with Cyclin E-CDK2. J Biol Chem 272:10882–10894.

    Article  PubMed  CAS  Google Scholar 

  40. Tekmal RR, Gill K, Kirma N, et al (1999) Aromatase overexpression and breast hyperplasia, an in vivo model: Continued overexpression of aromatase is sufficient to hyperplasia maintain without circulating estrogens, and use of aromatase inhibitors abrogate these preneoplastic changes in mammary glands. Endocrine-Related Caner 6:307–314.

    Article  CAS  Google Scholar 

  41. Yue W, Wang J, Savinov A, et al (1995) Effect of aromatase inhibitors on growth of mammary tumors in nude mouse model. Cancer Res 55:3073–3077.

    PubMed  CAS  Google Scholar 

  42. Yue W, Zhou D, Chen S, et al (1994) A new nude mouse model for postmenopausal breast cancer using with MCF-7 cells transfected with the human aromatase gene, Cancer Res 54:5092–5095.

    PubMed  CAS  Google Scholar 

  43. Mandava U, Kirma N, Tekmal RR (2001) Aromatase overexpression transgenic mice model: Cell type specific expression and use of letrozole to abrogate mammary hyperplasia without affecting normal physiology. J Steroid Biochem Mol Biol 79:27–34.

    Article  PubMed  CAS  Google Scholar 

  44. Luthra R, Kirma N, Jones J, et al (2003) Use of letrozole as a chemopreventive agent in aromatase overexpressing transgenic mice. J Steroid Biochem Mol Biol 86:461–467.

    Article  PubMed  CAS  Google Scholar 

  45. Shyamala G, Chou YC, Louie SG, et al (2002) Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging. J Steroid Biochem Mol Biol 80:137–148.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Tekmal, R.R., Kirma, N., Mandava, U., Luthra, R. (2005). Aromatase Overexpression: Effect of Tissue Estrogen on Phenotypic and Biochemical Changes in Aromatase Transgenic Mice. In: Li, J.J., Li, S.A., Llombart-Bosch, A. (eds) Hormonal Carcinogenesis IV. Springer, Boston, MA. https://doi.org/10.1007/0-387-23761-5_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-23761-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23783-1

  • Online ISBN: 978-0-387-23761-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics