Skip to main content

Probing of the ICln Channel Pore by Cysteine Mutagenesis and Cadmium-Block

  • Conference paper
Cell Volume and Signaling

4. Conclusions

Purified, water-soluble ICln protein forms ion channels by spontaneously incorporating into artificial lipid bilayers. Site-directed mutation experiments revealed E41 and D49 as the amino acids responsible for the Ca2+-dependence of the channels’ ion selectivity and G49 to be part of the putative nucleotide binding site of the protein. H64 could be pinpointed within the ion conducting pathway of ICln. In the present study, cysteine mutagenesis and Cd2+ block was used to further investigate the pore structure of the membrane spanning β-barrel formed by ICln, as proposed by the computer model and NMR studies. The results confirm that the amino acids G49 and S55 have access to the pore lumen of reconstituted ICln channels, as predicted by the model, and that S50 and L52 are facing the hydrophobic membraneous phase. According to the lack of Cd2+-block of ICln-G51C channels, the proposed ICln channel model has to be revised insofar as G51 seems not to face the pore lumen or is not accessible to Cd2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. J. Furst, C. Bazzini, M. Jakab, G. Meyer, M. Konig, M. Gschwentner, M. Ritter, A. Schmarda, G. Botta, R. Benz, P. Deetjen, and M. Paulmichl, Functional reconstitution of ICln in lipid bilayers, Pflugers Arch, 440(1), 100–15 (2000).

    PubMed  CAS  Google Scholar 

  2. C. Li, S. Breton, R. Morrison, C.L. Cannon, F. Emma, R. Sanchez-Olea, C. Bear, and K. Strange, Recombinant pICln forms highly cation-selective channels when reconstituted into artificial and biological membranes, J Gen Physiol, 112(6), 27–36 (1998).

    Article  Google Scholar 

  3. M. L. Garavaglia, S. Rodighiero, C. Bertocchi, R. Manfredi, J. Furst, M. Gschwentner, M. Ritter, C. Bazzini, G. Botta, M. Jakab, G. Meyer, and M. Paulmichl, ICln channels reconstituted in heart-lipid bilayer are selective to chloride, Pflugers Arch, 443(5–6), 748–53 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. J. Furst, M. Ritter, J. Rudzki, J. Danzl, M. Gschwentner, E. Scandella, M. Jakab, M. Konig, B. Oehl, F. Lang, P. Deetjen, and M. Paulmichl, ICln ion channel splice variants in Caenorhabditis elegans: voltage dependence and interaction with an operon partner protein, J Biol Chem, 277(6), 4435–45 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. J. Furst, M. Gschwentner, M. Ritter, G. Botta, M. Jakab, M. Mayer, L. Garavaglia, C. Bazzini, S. Rodighiero, G. Meyer, S. Eichmuller, E. Woll, and M. Paulmichl, Molecular and functional aspects of anionic channels activated during regulatory volume decrease in mammalian cells, Pflugers Arch, 444(1–2), 1–25 (2002).

    PubMed  CAS  Google Scholar 

  6. S. Eichmuller, V. Vezzoli, C. Bazzini, M. Ritter, J. Furst, M. Jakab, A. Ravasio, S. Chwatal, S. Dossena, G. Botta, G. Meyer, B. Maier, G. Valenti, F. Lang, and M. Paulmichl, A new gene-finding tool: using the Caenorhabditis elegans operons for identifying functional partner proteins in human cells, J Biol Chem, 279(8) 7136–46 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. M.W. Musch, C.A. Luer, E.M. Davis-Amaral, and L. Goldstein, Hypotonic stress induces translocation of the osmolyte channel protein pICln in embryonic skate (Raja eglanteria) heart, J Exp Zool, 277(6), 460–3 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. M.W. Musch, E.M. Davis-Amaral, H.H. Vandenburgh, and L. Goldstein, Hypotonicity stimulates translocation of ICln in neonatal rat cardiac myocytes, Pflugers Arch, 436(3), 415–22 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. M. Ritter, A. Ravasio, M. Jakab, S. Chwatal, J. Furst, A. Laich, M. Gschwentner, S. Signorelli, C. Burtscher, S. Eichmuller, and M. Paulmichl, Cell swelling stimulates cytosol to membrane transposition of ICln, J Biol Chem, 278(50), 50163–74 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. F. Emma, R. Sanchez-Olea, and K. Strange, Characterization of pI(Cln) binding proteins: identification of p17 and assessment of the role of acidic domains in mediating protein-protein interactions, Biochim Biophys Acta, 1404(3), 321–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. M. Gschwentner, U.O. Nagl, A. Schmarda, E. Woll, M. Ritter, W. Waitz, P. Deetjen, and M. Paulmichl, Structure-function relation of a cloned epithelial chloride channel, Ren Physiol Biochem, 17(3–4), 148–52 (1994).

    PubMed  CAS  Google Scholar 

  12. M. Gschwentner, U.O. Nagl, E. Woll, A. Schmarda, M. Ritter, and M. Paulmichl, Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels, Pflugers Arch, 430(4), 464–70 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. M. Gschwentner, J. Furst, M. Ritter, C. Bazzini, E. Woll, A. Dienstl, M. Jakab, M. Konig, E. Scandella, J. Rudzki, G. Botta, G. Meyer, F. Lang, P. Deetjen, and M. Paulmichl, ICln, an ion channel-forming protein associated with cell volume regulation, Exp Physiol, 84(6), 1023–31 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. W. T. Pu, K. Wickman, and D.E. Clapham, ICln is essential for cellular and early embryonic viability, J Biol Chem, 275(17), 12363–6 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. A. Schmarda, F. Fresser, M. Gschwentner, J. Furst, M. Ritter, F. Lang, G. Baier, and M. Paulmichl, Determination of protein-protein interactions of ICIn by the yeast two-hybrid system, Cell Physiol Biochem, 11(1), 55–60 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. W. T. Pu, G.B. Krapivinsky, L. Krapivinsky, and D.E. Clapham, pICln inhibits snRNP biogenesis by binding core spliceosomal proteins, Mol Cell Biol, 19(6) 4113–20 (1999).

    PubMed  CAS  Google Scholar 

  17. G. Krapivinsky, W. Pu, K. Wickman, L. Krapivinsky, and D.E. Clapham, pICln binds to a mammalian homolog of a yeast protein involved in regulation of cell morphology, J Biol Chem, 273(18), 10811–4 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. C. J. Tang and T.K. Tang, The 30-kD domain of protein 4.1 mediates its binding to the carboxyl terminus of pICln, a protein involved in cellular volume regulation, Blood, 92(4), 1442–7 (1998).

    PubMed  CAS  Google Scholar 

  19. G. Z. Tao and Y. Tashima, A peptide derived from pICln induced a strong hypotonic resistance in Escherichia coli cells, Peptides, 21(4), 485–90 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. R. S. Schwartz, A.C. Rybicki, and R.L. Nagel, Molecular cloning and expression of a chloride channel-associated protein pICln in human young red blood cells: association with actin, Biochem J, 327 (Pt 2), 609–16 (1997).

    PubMed  CAS  Google Scholar 

  21. Y. Okada, Volume expansion-sensing outward-rectifier Cl− channel: fresh start to the molecular identity and volume sensor, Am J Physiol, 273(3 Pt 1), C755–89 (1997).

    PubMed  CAS  Google Scholar 

  22. K. Strange, Molecular identity of the outwardly rectifying, swelling-activated anion channel: time to reevaluate pICln, J Gen Physiol, 111(5), 617–22 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. M. Paulmichl, Y. Li, K. Wickman, M. Ackerman, E. Peralta, and D. Clapham, New mammalian chloride channel identified by expression cloning, Nature, 356(6366), 38–41 (1992).

    Article  Google Scholar 

  24. J. Furst, M. Jakab, M. Konig, M. Ritter, M. Gschwentner, J. Rudzki, J. Danzl, M. Mayer, C.M. Burtscher, J. Schirmer, B. Maier, M. Nairz, S. Chwatal, and M. Paulmichl, Structure and function of the ion channel ICln, Cell Physiol Biochem, 10(5–6), 329–34 (2000).

    PubMed  CAS  Google Scholar 

  25. A. Schedlbauer, G. Kontaxis, M. Konig, J. Furst, M. Jakab, M. Ritter, L. Garavaglia, G. Botta, G. Meyer, M. Paulmichl, and R. Konrat, Sequence-specific resonance assignments of ICln, an ion channel cloned from epithelial cells, J Biomol NMR, 27(4), 399–400 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. H. Satofuka, T. Fukui, M. Takagi, H. Atomi, and T. Imanaka, Metal-binding properties of phytochelatin-related peptides, J Inorg Biochem, 86(2–3), 595–602 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. X. Li, K. Suzuki, K. Kanaori, K. Tajima, A. Kashiwada, H. Hiroaki, D. Kohda, and T. Tanaka, Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries, Protein Sci, 9(7), 1327–33 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. M. Matzapetakis, B.T. Farrer, T.C. Weng, L. Hemmingsen, J.E. Penner-Hahn, and V.L. Pecoraro, Comparison of the binding of cadmium(II), mercury(II), and arsenic(III) to the de novo designed peptides TRI L12C and TRI L16C, J Am Chem Soc, 124(27), 8042–54 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. H. Chen, F. Sesti, and S.A. Goldstein, Pore-and State-Dependent Cadmium Block of I(Ks) Channels Formed with MinK-55C and Wild-Type KCNQ1 Subunits, Biophys J, 84(6), 3679–89 (2003).

    PubMed  CAS  Google Scholar 

  30. J. Xiao, X.G. Zhen, and J. Yang, Localization of PIP2 activation gate in inward rectifier K+ channels, Nat Neurosci, 6(8), 811–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. E. J. Neale, D.J. Elliott, M. Hunter, and A. Sivaprasadarao, Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel, J Biol Chem, 278(31), 29079–85 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. A. M. Rosati and U. Traversa, Mechanisms of inhibitory effects of zinc and cadmium ions on agonist binding to adenosine A1 receptors in rat brain, Biochem Pharmacol, 58(4), 623–32 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. A. B. Ekici, O.S. Park, C. Fuchs, and B. Rautenstrauss, One-tube, two-stage PCR-directed in vitro mutagenesis using megaprimers, [Technical Tips]. TTO, 1(14), T01122 (1997).

    Google Scholar 

  34. B. P. Chen and T. Hai, Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli as host, Gene, 139(1), 73–5 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. B. E. Ehrlich, Planar lipid bilayers on patch pipettes: bilayer formation and ion channel incorporation, Methods Enzymol, 207, 463–70 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. T. D. Bond, S. Ambikapathy, S. Mohammad, and M.A. Valverde, Osmosensitive C1-currents and their relevance to regulatory volume decrease in human intestinal T84 cells: outwardly vs. inwardly rectifying currents, J Physiol, 511 (Pt 1), 45–54 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. J. Fritsch and A. Edelman, Osmosensitivity of the hyperpolarization-activated chloride current in human intestinal T84 cells, Am J Physiol, 272(3 Pt 1), C778–86 (1997).

    PubMed  CAS  Google Scholar 

  38. L. M. Shuba, T. Ogura, and T.F. McDonald, Kinetic evidence distinguishing volume-sensitive chloride current from other types in guinea-pig ventricular myocytes, J Physiol, 491 (Pt 1), 69–80 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Jakab, M. et al. (2004). Probing of the ICln Channel Pore by Cysteine Mutagenesis and Cadmium-Block. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_9

Download citation

Publish with us

Policies and ethics