Skip to main content

Molecular Physiology of the Renal Na+-Cl and Na+-K+-2Cl Cotransporters

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 559))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. S.C. Hebert, D.B. Mount, & G. Gamba, Molecular physiology of cation-coupled Cl(−) cotransport: the SLC12 family, Pflugers Arch. 447, 580–593 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. G Gamba, S.N. Saltzberg, M Lombardi, A. Miyanoshita, J Lytton, M.A. Hediger, B.M. Brenner and S.C. Hebert, Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter, Proc. Natl. Acad. Sci. USA 90, 2749–2753 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. J.C. Xu, C. Lytle, T.T. Zhu, J.A. Payne, Jr. E. Benz and B. Forbush, Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter, Proc. Natl. Acad. Sci. USA 91, 2201–2205 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. P. K. Lauf, Thiol-dependent passive K/Cl transport in sheep red cells: IV. Furosemide inhibition as a function of external Rb+, Na+, and Cl−, J Membr. Biol. 77, 57–62 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. Gamba, G, Electroneutral chloride-coupled co-transporters, Curr. Opin. Nephrol. Hypertens. 9, 535–540 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. G. Gamba, Molecular biology of distal nephron sodium transport mechanisms, Kidney Int. 56, 1606–1622 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. D.B. Mount and G. Gamba, Renal potassium-chloride cotransporters, Curr. Opin. Nephrol. Hypertens. 10, 685–691 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. G. Gamba, Alternative splicing and diversity of renal transporters, Am J Physiol Renal Physiol 281, F781–F794 (2001).

    PubMed  CAS  Google Scholar 

  9. T. Gerelsaikhan and R.J. Turner, Transmembrane topology of the secretory Na+-K+-2Cl cotransporter (NKCC1) studied by in vitro translation, J Biol. Chem. 275, 40471–40477 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. P.G. Starremans, F.F. Kersten, L.P. van den Heuvel, N.V. Knoers, and R.J. Bindels, Dimeric architecture of the human bumetanide-sensitive Na-K-Cl Co-transporter, J. Am. Soc. Nephrol. 14, 3039–3046 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. J.C. De Jong, P.H. Willems, F.J. Mooren, L.P. van den Heuvel, N.V. Knoers, and R.J. Bindels, The structural unit of the thiazide-sensitive NaCl cotransporter is a homodimer, J. Biol. Chem. 278, 24302–24307 (2003).

    Article  PubMed  Google Scholar 

  12. I. Kurtz, Molecular pathogenesis of Bartter’s and Gitelman’s syndromes, Kidney Int. 54, 1396–1410 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. E. Delpire, and D.B Mount Human and murine phenotypes associated with defects in cation-chloride cotransport, Annu. Rev. Physiol 64, 803–843 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. H. Mayan, I. Vered, M. Mouallem, M. Tzadok-Witkon, R. Pauzner, and Z. Farfel, Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density, J. Clin. Endocrinol. Metab 87, 3248–3254 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. F.H. Wilson, S. Disse-Nicodeme, K.A. Choate, K. Ishikawa, C. Nelson-Williams, I. Desitter, M. Gunel, D.V. Milford, G.W. Lipkin, J.M. Achard, Human hypertension caused by mutations in WNK kinases, Science 293, 1107–1112 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. F.H. Wilson, K.T. Kahle, E. Sabath, M.D. Lalioti, A.K. Rapson, R.S. Hoover, S.C. Hebert, G. Gamba, and R.P. Lifton, Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4, Proc. Natl. Acad. Sci. U. S. A 100, 680–684 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. C.L. Yang, J. Angell, R. Mitchell, and D.H. Ellison, WNK kinases regulate thiazide-sensitive Na-Cl cotransport, J. Clin. Invest 111, 1039–1045 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. G. Gamba, A. Miyanoshita, M. Lombardi, J. Lytton, W.S. Lee, M.A. Hediger and S.C. Hebert, Molecular cloning, primary structure and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney, J. Biol. Chem. 269, 17713–17722 (1994).

    PubMed  CAS  Google Scholar 

  19. A. Monroy, C. Plata, S.C. Hebert, and G. Gamba, Characterization of the thiazide-sensitive Na+-Cl cotransporter: a new model for ions and diuretics interaction, Am. J. Physiol. Renal Physiol. 279, F161–F169 (2000).

    PubMed  CAS  Google Scholar 

  20. N. Vazquez, A. Monroy, E. Dorantes, R.A. Munoz-Clares, and Gamba, G, Functional differences between flounder and rat thiazide-sensitive Na-Cl cotransporter, Am. J. Physiol. Renal Physiol. 282, F599–F607 (2002).

    PubMed  CAS  Google Scholar 

  21. R.S. Hoover, E. Poch, A. Monroy, N. Vazquez, T. Nishio, G. Gamba and S.C. Hebert, N-Glycosylation at Two Sites Critically Alters Thiazide Binding and Activity of the Rat Thiazide-sensitive Na+-Cl-Cotransporter, J. Am. Soc. Nephrol. 14, 271–282 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. E. Moreno, C. Tovar-Palacio, P. De los Heros, B. Guzman, N.A. Bobadilla, N. Vazquez, D. Riccardi, E. Poch and G. Gamba, A single nucleotide polymorphism alters the activity of the renal Na+-Cl− cotransporter and reveals a role for transmembrane segment 4 in chloride and thiazide affinity, J. Biol. Chem. 279 16553–16560 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. S. Kunchaparty, M. Palcso, J. Berkman, H Vazquez, G.V. Desir, P. Bernstein, R.F. Reilly and D.H. Ellison, Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman’s syndrome, Am. J. Physiol. 277, F643–F649 (1999).

    PubMed  CAS  Google Scholar 

  24. J. C. De Jong, W. A. Van Der Vliet, L. P. van den Heuvel, P. H. Willems, N. V. Knoers, and R.J. Bindels, Functional Expression of Mutations in the Human NaCl Cotransporter: Evidence for Impaired Routing Mechanisms in Gitelman’s Syndrome, J Am Soc. Nephrol. 13, 1442–1448 (2002).

    Article  PubMed  Google Scholar 

  25. S. Sabath, P. Meade, J. Berkman, P. de los Heros, E. Moreno, N. A. Bobadilla, N. Vazquez, D.H. Ellison and G. Gamba, Pathophysiology of Functional Mutations of the Thiazide-sensitive Na-Cl Cotransporter in Gitelman Disease. Journal of the American Society of Nephrology. Characterization of functional mutations in Gitelman’s disease, Am. J. Physiol. (Renal Physiol.) (April 6, 2004). 10.1152/ajprenal.00044.2004.

    Google Scholar 

  26. J.A. Payne and B. Forbush Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney, Proc. Natl. Acad. Sci. USA 91, 4544–4548 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. P. Igarashi, G.B. Vanden Heuver, J.A. Payne and B. Forbush, Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter, Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 269, F406–F418 (1995).

    Google Scholar 

  28. T. Yang, Y.G. Huang, I. Singh, J. Schnermann and J.P. Briggs, Localization of bumetanide-and thiazidesensitive Na-K-Cl cotransporters along the rat nephron, Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 271, F931–F939 (1996).

    CAS  Google Scholar 

  29. C. Plata, P. Meade, N. Vazquez, S.C. Hebert and G. Gamba, Functional properties of the apical Na+-K+-2Cl− cotransporter isoforms, J Biol. Chem. 277, 11004–11012 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. I. Gimenez, P. Isenring and B. Forbush, Spatially distributed alternative splice variants of the renal Na-KCl cotransporter exhibit dramatically different affinities for the transported ions, J Biol. Chem. 277, 8767–8770 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. D.B. Mount A. Baekgard, A.E. Hall, C. Plata, J. Xu, D.R. Beier, G. Gamba and S.C. Hebert, Isoforms of the Na-K-2Cl transporter in murine TAL I. Molecular characterization and intrarenal localization, Am. J. Physiol. Renal Physiol. 276, F347–F358 (1999).

    CAS  Google Scholar 

  32. C. Plata, D.B. Mount, V. Rubio, S.C. Hebert and G. Gamba, Isoforms of the Na-K-2Cl cotransporter in murine TAL. II. Functional characterization and activation by cAMP, Am. J. Physiol. (Renal Physiol.) 276, F359–F366 (1999).

    CAS  Google Scholar 

  33. C. Plata, P. Meade, A.E. Hall, R.C. Welch, N. Vazquez, S.C. Hebert, and Gamba, Alternatively spliced isoform of the apical Na-K-Cl cotransporter gene encodes a furosemide sensitive Na-Cl cotransporter, Am. J. Physiol. (Renal Physiol.) 280, F574–F582 (2001).

    CAS  Google Scholar 

  34. A. Sun, E.B. Grossman, M. Lombardi and S.C. Hebert, Vasopressin alters the mechanism of apical Cl-entry from Na+-Cl to Na+-K+-2Cl cotransport in mouse medullary thick ascending limb, J. Membrane Biol. 120, 83–94 (1991).

    Article  CAS  Google Scholar 

  35. M. Haas, P.B. Dunham and B. Forbush, [3H]Bumetanide binding to mouse kidney membranes: Identification of corresponding membrane proteins, Am. J. Physiol (Cell Physiol) 260, C791–C804 (1991).

    CAS  Google Scholar 

  36. J. Eveloff and J. Calamia, Effect of osmolarity on cation fluxes in medullary thick ascending limb cells, Am. J. Physiol.(Renal Physiol.) 250, F176–F180 (1986).

    CAS  Google Scholar 

  37. F. Beck, A. Dörge, R. Rick and K Thurau, Osmoregulation of renal papillary cells, Pflugers Arch. 405, S28–S32 (1985).

    Article  PubMed  Google Scholar 

  38. F.X. Beck, W.G. Guder and M. Schmolke, Cellular osmoregulation in kidney medulla, in Cell Volume Regulation, ed. Lang F (Karger, Basel), pp. 169–184 (1998).

    Google Scholar 

  39. A. Di Stefano, R. Greger, E. Desfleurs, C. de Rouffignac and M. Wittner, A Ba2+-insensitive K+ conductance in the basolateral membrane of rabbit cortical thick ascending limb cells, Cell Physiol. Biochem. 8, 89–105 (1998).

    Article  PubMed  Google Scholar 

  40. S.C. Hebert, R.M. Culpepper and T.E. Andreoli, NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotrasport; origin of transepithelial volatge, Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 241, F432–F442 (1981).

    CAS  Google Scholar 

  41. D.A. Molony, W.B. Reeves, S.C. Hebert and T. Andreoli, ADH increases apical Na+,K+,2Cl entry in mouse medullary thick ascending limbs of Henle, Am. J. Physiol. (Renal Physiol.) 252, F177–F187 (1987).

    CAS  Google Scholar 

  42. P. Meade, R. Hoover, C. Plata, N. Vazquez, N.A. Bobadilla, G. Gamba, and S.C. Hebert, cAMP-dependent activation of the renal-specific Na+-K+-2Cl− cotransporter is mediated by regulation of cotransporter trafficking, Am. J. Physiol (Renal Physiol.) 284, F1145–F1154 (2003).

    CAS  Google Scholar 

  43. S.C. Hebert, R.M. Culpepper and T.E. Andreoli, NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport, Am. J. Physiol. (Renal Physiol.) 241, F412–F431 (1981).

    CAS  Google Scholar 

  44. I. Gimenez and B Forbush, Short-term stimulation of the renal Na-K-Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein, J. Biol. Chem. 278, 26946–26951 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Gamba, G., Bobadilla, N.A. (2004). Molecular Physiology of the Renal Na+-Cl and Na+-K+-2Cl Cotransporters. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_5

Download citation

Publish with us

Policies and ethics