Skip to main content

Glial-Neuronal Signaling and Astroglial Swelling in Physiology and Pathology

  • Conference paper
Cell Volume and Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((volume 559))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. D.O. Keyser, and T.C. Pellmar, Synaptic transmission in the hippocampus: critical role for glial cells, GLIA, 10, 237–243 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. A. Araque, V. Parpura, R.P. Sanzgiri, and P.G. Haydon, Tripartite synapses: glia, the acknowledged partner, Trends Neurosci. 22, 208–215 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. F. Blomstrand, S. Khatibi, H. Muyderman, E. Hansson, T. Olsson, and L. Rönnbäck, 5-Hydroxytryptamine and glutamate modulate velocity and extent of intercellular calcium signalling in hippocampal astroglial cells in primary culture, Neuroscience, 88, 1241–1253 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. M.L. Cotrina, J.H. Lin, A. Alves-Rodrigues, S. Liu, J. Li, H. Azmi-Ghadimi, J. Kang, C.C. Naus, and M. Nedergaard, Connexins regulate calcium signalling by controlling ATP release, Proc. Natl. Acad. Sci. USA 95, 15735–15740 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. P.B. Guthrie, J. Knappenberger, M. Segal, M.V.L. Bennett, A.C. Charles, and S.B. Kater, ATP released from astrocytes mediates glial calcium waves, J. Neurosci. 19, 520–528 (1999).

    PubMed  CAS  Google Scholar 

  6. G.R. John, E. Scemes, S.O. Suadicani, J.S.H. Liu, P.C. Charles, S.C. Lee, D.C. Spray, and C.F. Brosnan, IL-1β differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels, Proc. Natl. Acad. Sci. USA. 96, 11613–11618 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. N. Rouach, J. Glowinski, and C. Giaume, Activity-dependent neuronal control of gap-junctional communication in astrocytes, J. Cell Biol. 149, 1513–1526 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. E. Hansson, and L. Rönnbäck, Astrocytic receptors and second messenger systems, Advances in Molecular and Cell Biology (Elsevier Science B.V. 31, pp. 475–502 (2003).

    Article  Google Scholar 

  9. G. Gegelashvili, Y. Dehnes, N.C. Danbolt, and A. Shousboe, The high-affinity glutamate transporters GLT, GLAST, and EAAT4 are regulated via different signalling mechanisms, Neurochem. Int. 37, 163–170 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. N.C. Danbolt, Glutamate uptake, Progr. Neurobiol. 65, 1–105 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. M Tsacopoulus, Metabolic signaling between neurons and glial cells: a short review, J. Physiol., Paris, 96, 283–288 (2002).

    Article  Google Scholar 

  12. L. Hertz, R. Dringen, A. Schousboe, and S.R. Robinson, Astrocytes: Glutamate producers for neurons, J. Neurosci. Res. 57, 417–428 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. L. Hertz, A.C.H. Yu, G. Kala, and A. Schousboe, Neuronal-astrocytic and cytosolic mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation, Neurochem. Int. 37, 83–102 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. E. Hansson, and L. Rönnbäck, Glial neuronal signaling in the central nervous system, FASEB J, 17, 341–348 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. J.M. Robertson, The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory function, J. Physiol. Paris 96, 251–255 (2002).

    Article  PubMed  Google Scholar 

  16. L. Hertz, E. Hansson, and L. Rönnbäck, Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memorian, Neurochem. Int. 39, 227–252 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. R.K. Orkand, J.G. Nicholls, and S.W. Kuffler, Effect of nerve impulses on the membrane potential of glial cells in the nervous system in amphibian, J Neuropysiol. 29, 788–806 (1966).

    CAS  Google Scholar 

  18. R.K. Orkand, Glial-interstitial fluid exchange, Ann NY Acad Sci. 481, 269–272 (1986).

    PubMed  CAS  Google Scholar 

  19. L. Pasti, A. Volterra, T. Pozzan, and G. Carmignoto, Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ, J. Neurosci. 17, 7817–7830 (1997).

    PubMed  CAS  Google Scholar 

  20. G. Carmignoto, Reciprocal communication systems between astrocytes and neurones, Progr. Neurobiol. 62, 561–581 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. H. Muyderman, M. Ängehagen, M. Sandberg, U. Björklund, T. Olsson, E. Hansson, and M. Nilsson, α1-Adrenergic modulation of metabotropic glutamate receptor-induced calcium oscillations and glutamate release in astrocytes, J. Biol. Chem. 276, 46504–46514 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. M. Zonta, and G. Carmignoto, Calcium oscillations encoding neuron-to-astrocyte communication, J. Physiol. Paris 96, 193–198 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. M. Zonta, A. Sebelin, S. Gobbo, T. Fellin, T. Pozzan, and G. Carmignoto, Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes, Physiology 17, 1–16 (2003).

    Google Scholar 

  24. P.B. Guthrie, J. Knappenberger, M. Segal, M.V.L. Bennett, A.C. Charles, and S.B. Kater, ATP released from astrocytes mediates glial calcium waves, J. Neurosci. 19, 520–528 (1999).

    PubMed  CAS  Google Scholar 

  25. S.R. Fam, C.J. Gallagher, L.V. Kalia, and M.W. Salter, Differential frequency dependence of P2Y1-and P2Y2-mediated Ca2+ signalling in astrocytes, J. Neurosci. 23, 4437–4444 (2003).

    PubMed  CAS  Google Scholar 

  26. C. Verderio, and M. Matteoli, ATP mediates calcium signalling between astrocytes and microglial cells: modulation by IFN-γ, J. Immunol. 166, 6383–6391 (2001).

    PubMed  CAS  Google Scholar 

  27. C.G. Schipke, C, Boucsein, C, Ohlemeyer, F. Kirchhoff, and H. Kettenmann, Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices, FASEB J. 16, 255–257 (2002).

    PubMed  CAS  Google Scholar 

  28. S.L. Langle, D.A. Poulain, and D.T. Theodosis, Neuronal-glial remodelling: a structural basis for neuronal-glial interactions in the adult hypothalamus, J. Physiol. Paris 96, 169–175 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. E. Syková, Glial diffusion barriers during aging and pathological states, Progr. Brain Res. 132, 339–363 (2001).

    Article  Google Scholar 

  30. K. Fuxe, and L.F. Agnati, Volume transmission in the brain: novel mechanisms for neural transmission, Raven Press, New York, (1991).

    Google Scholar 

  31. C. Nicholson, and E. Syková, Extracellular space structure revealed by diffusion analysis, Trends Neurosci. 21, 207–215 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. H.K. Kimelberg, S.K. Goderie, S. Higman, S. Pang, and R.A. Waniewski, Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures, J. Neurosci. 10, 1583–1591 (1990).

    PubMed  CAS  Google Scholar 

  33. E. Hansson, Metabotropic glutamate receptor activation induces astroglial swelling, J. Biol. Chem. 269, 21955–21961 (1994).

    PubMed  CAS  Google Scholar 

  34. B.R. Ransom, C.L Yamate, and B.W. Connors, Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study, J. Neurosci. 5, 532–535 (1985).

    PubMed  CAS  Google Scholar 

  35. O. Kempski, F. Staub, M. Jansen, and A. Baethmann, Molecular mechanisms of glial swelling in acidosis, Adv. Neurol. 52, 39–45 (1990).

    PubMed  CAS  Google Scholar 

  36. A.A. Mongin, Z. Cai, and K.H. Kimelberg, Volume-dependent taurine release from cultured astrocytes requires permissive [Ca2+]i and calmodulin, Am. J. Physiol. 277, C823–C832 (1999).

    PubMed  CAS  Google Scholar 

  37. E.M. Rutledge, M. Aschner, and H.K. Kimelberg, Pharmacological characterization of swelling-induced D-[3H]aspartate release from primary astrocyte cultures, Am. J. Physiol. 274, C1511–C1520 (1998).

    PubMed  CAS  Google Scholar 

  38. E. Hansson, and L. Rönnbäck, Astrocytes in glutamate neurotransmission, FASEB J. 9, 343–350 (1994).

    Google Scholar 

  39. G. Riedel, Function of metabotropic glutamate receptors in learning and memory, Trends Neurosci, 19, 219–224 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. E. Hansson, T. Olsson, and L. Rönnbäck, eds. On astrocytes and glutamate neurotransmission (Landes Bioscience Company, Springer, Austin, TX, 1997).

    Google Scholar 

  41. J.D. Rothstein, M. Dykes-Hoberg, C.A. Pardo, L.A. Bristol, L. Jin, R. Kuncl, Y. Kanai, M.A. Hediger, Y. Wang, J.P Schielke, and D.F. Welty, Knockout of glutamate transporters reveals a major role of astroglial transport in excitotoxicity and clearance of glutamate, Neuron,16, 675–686 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. M. Yudkoff, I. Nissim, Y. Daikhin, Z-P. Lin, D. Nelson, D. Pleasure, and M. Erecinska, Brain glutamate metabolism: neuronal-astroglial relationships, Dev. Neurosci. 15, 343–350 (1993).

    PubMed  CAS  Google Scholar 

  43. D. Scheller, S. Szathmary, J. Kolb, and F. Tegtmeier, Observations on the relationship between the extracellular changes of taurine and glutamate during cortical spreading depression, during ischemia, and within the area surrounding a thrombotic infarct, Amino Acids 19, 571–583 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. B. Barbour, M. Szatkowski, N. Ingledew, and D. Attwell, Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells, Nature 342, 918–919 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. C.E. Virgin Jr, T.P. Ha, D.R. Packan, G.C. Tombaugh, S.H. Yang, H.C. Horner, and R.M. Sapolsky, Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity, J. Neurochem. 57, 1422–1428 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. H. Köller, M. Siebler, M. Pekel, and H.W. Muller, Depolarization of cultured astrocytes by leukotriene B4. Evidence for the induction of a K+ conductance inhibitor, Brain Res. 612, 28–34 (1993).

    Article  PubMed  Google Scholar 

  47. J.P. Bolanos, and J.M. Medina, Induction of nitric oxide synthase inhibits gap junction permeability in cultured rat astrocytes, J. Neurochem. 66, 2091–2099 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. S.M. Fine, R.A. Angel, S.W. Perry, L.G. Epstein, J.D. Rothstein, S. Dewhurst, and H.A. Gelbard, Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia, J. Biol. Chem. 271, 15303–15306 (1996).

    Article  PubMed  CAS  Google Scholar 

  49. O. Sorg, T.F. Horn, N. Yu, D.L. Gruol, and F.E. Bloom, Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes, Mol. Med. 3, 431–440 (1996).

    Google Scholar 

  50. F. Blomstrand, C. Giaume, E. Hansson, and L. Rönnbäck, Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca2+ signaling, Am. J. Physiol. Cell. Physiol. 277, C616–C627 (1999).

    CAS  Google Scholar 

  51. J. Leonova, T. Thorlin, N.D. Åberg, P.S. Eriksson, L. Rönnbäck, and E. Hansson, Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes, Am. J. Physiol. Cell. Physiol. 281, C1495–C1503 (2001).

    PubMed  CAS  Google Scholar 

  52. R.A. Swanson, K. Farrell, R.P. Simon, Acidosis causes failure of astrocyte glutamate uptake during hypoxia, J. Cereb. Blood Flow Metab. 15, 417–424 (1995).

    PubMed  CAS  Google Scholar 

  53. G.W. Kreutzberg, Microglia: a sensor for pathological events in the CNS, Trends Neurosci. 19, 312–318 (1996).

    Article  PubMed  CAS  Google Scholar 

  54. American Psychiatric Association, Diagnostic and statistical manual of mental disorders, 4th ed. Washington DC: American Psychiatric Association (1994).

    Google Scholar 

  55. G. Lindqvist, and H. Malmgren, Organic mental disorders as hypothetical pathogenetic processes, Acta Psychiatr. Scand. 88,Suppl 373:5–17 (1993).

    Google Scholar 

  56. F.W Pfrieger, and B.A. Barres, Synaptic efficacy enhanced by glial cells in vitro, Science 277, 1684–1687 (1997).

    Article  PubMed  CAS  Google Scholar 

  57. P. Magistretti, and L. Pellerin, Regulation by neurotransmitters of glial energy metabolism, Adv. Exp. Med. Biol. 429, 137–143 (1997).

    PubMed  CAS  Google Scholar 

  58. S.J. Sara, and A. Hervé-Minvielle, Inhibitory influence of frontal cortex on locus coeruleus neurons, Proc. Natl. Acad. Sci. USA 92, 6032–6036 (1995).

    Article  PubMed  CAS  Google Scholar 

  59. K.V. Subbaru, and L. Hertz, Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes, Brain Res. 536, 220–226 (1009).

    Article  Google Scholar 

  60. C.C. Hsu, and C.S. Hsu, Effect of isoproterenol on the uptake of 14C-glucose into glial cells, Neurosci. Res. 9, 54–58 (1990).

    Article  PubMed  CAS  Google Scholar 

  61. N.I. Bohnen, J. Jolles, A. Twijnstra, R. Mellink, and G. Winjen, Late neurobehavioural symptoms after mild head injury, Brain Injury 9, 27–33 (1995).

    PubMed  CAS  Google Scholar 

  62. S.J. Granr, G. Aston-Jones, and E. Redmond, Jr, Responses of primate locus coeruleus neurons to simple and complex sensory stimuli, Brain Res. Bull. 21, 401–410 (1988).

    Article  Google Scholar 

  63. S.M. Sweitzer, P. Schubert, and J.A. DeLeo, Propentofylline, a glial modulating agent exhibits anti-allodynic properties in a rat model of neuropathic pain, J. Pharmacol. Exp. Ther. 297, 1210–1217 (2001).

    PubMed  CAS  Google Scholar 

  64. E. Hansson, and L. Rönnbäck, Altered neuronal-glial signaling in glutamatergic transmission as a unifying mechanism in chronic pain and mental fatigue, Neurochem. Res. 29, 987–994 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Hansson, E., Rönnbäck, L. (2004). Glial-Neuronal Signaling and Astroglial Swelling in Physiology and Pathology. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_28

Download citation

Publish with us

Policies and ethics