Skip to main content

Polycystin-2 as a Signal Transducer

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 559))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. A.C. Enders, Formation of syncitium from cytotrophoblast in the human placenta, Obstet Gynecol. 25, 378–386 (1965).

    PubMed  CAS  Google Scholar 

  2. P. Truman, J.S. Wakefield, J.S. & H.C. Ford, Microvilli of the human term placenta, Isolation and subfractionation by centrifugation in sucrose density gradients. Biochem. J. 196, 121–132 (1981).

    PubMed  CAS  Google Scholar 

  3. R. Demir, G. Kosanke, G. Kohnen, S. Kertschanska, P. Kaufmann, Classification of human placental stem villi: review of structural and functional aspects, Microsc. Res. Tech. 38, 29–41 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. J. Stulc, Placental transfer of inorganic ions and water, Physiol. Rev. 77, 805–836 (1997).

    PubMed  CAS  Google Scholar 

  5. C. Grosman, I.L. Reisin, Single-channel characterization of a nonselective cation channel from human placental microvillus membranes. Large conductance, multiplicity of conductance states, and inhibition by lanthanides, J. Membr. Biol. 174, 59–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. S. González-Perrett, K. Kim, C. Ibarra, A.E. Damiano, E. Zotta, M. Batelli, P.C. Harris, I.L. Reisin, M.A. Arnaout & H.F. Cantiello, Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel, Proc. Natl. Acad. Sci. USA 98, 1182–1187 (2001).

    Article  PubMed  Google Scholar 

  7. P. Llanos, M. Henriquez, & G. Riquelme, A low conductance, non-selective cation channel from human placenta, Placenta 23, 184–191 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. M. Berryman, & A. Bretscher, Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli, Mol. Biol. Cell. 11, 1509–1521 (2000).

    PubMed  CAS  Google Scholar 

  9. L. Bernucci, F. Umana, P. Llanos, & G. Riquelme, Large chloride channel from pre-eclamptic human placenta, Placenta 24, 895–903. (2003).

    Article  PubMed  CAS  Google Scholar 

  10. C.D. Ockleford, J. Wakely, & R.A. Badley, Morphogenesis of human placental chorionic villi: cytoskeletal, syncytioskeletal and extracellular matrix proteins, Proc. R. Soc. Lond. B Biol. Sci. 212, 305–316 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. P. Truman, & H.C. Ford, Proteins of human placental microvilli: I. Cytoskeletal proteins, Placenta 7, 95–110 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. C.H. Smith, D.M. Nelson, B.F. King, T.M. Donohue, S. Ruzycki, & L.K. Kelley, Characterization of a microvillous membrane preparation from human placental syncytiotrophoblast: a morphologic, biochemical, and physiologic study, Am. J. Obstet. Gynecol. 128, 190–196 (1977).

    PubMed  CAS  Google Scholar 

  13. G.C. Douglas, & B.F. King, Colchicine inhibits human trophoblast differentiation in vitro, Placenta 14, 187–201 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. R.K. Clark, & I. Damjanov, Intermediate filaments of human trophoblast and choriocarcinoma cell lines, Virchows Arch. A. Pathol. Anat. Histopathol. 407, 203–208 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. M. Hesse, T. Franz, Y. Tamai, M.M. Taketo, & T.M. Magin, Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality, EMBO J. 19, 5060–5070 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. P.C. de Souza, & S.G. Katz, Coexpression of cytokeratin and vimentin in mice trophoblastic giant cells, Tissue Cell 33, 40–45 (2001).

    Article  PubMed  Google Scholar 

  17. A. Beham, H. Denk, H. & G. Desoye, The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies, Placenta 9, 479–492 (1988).

    PubMed  CAS  Google Scholar 

  18. M.M. Parast, & C.A. Otey, Characterization of palladin, a novel protein localized to stress fibers and cell adhesions, J. Cell Biol. 150, 643–656 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. A.G. Booth, & O.A. Vanderpuye, Structure of human placental microvilli, Ciba Found. Symp. 95, 180–194 (1983).

    PubMed  CAS  Google Scholar 

  20. O.A. Vanderpuye, H.C. Edwards, & A.G. Booth, Proteins of the human placental microvillar cytoskeleton, alpha-Actinin. Biochem J. 233, 351–356 (1986).

    PubMed  CAS  Google Scholar 

  21. M. Berryman, R. Gary, & A. Bretscher, Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis, J. Cell Biol. 131, 1231–1242 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. D. Reczek, M. Berryman, & A. Bretscher, Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family, J. Cell Biol. 139, 169–179 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. D. Kaczan-Bourgois, J.P. Salles, F. Hullin, J. Fauvel, A. Moisand, I. Duga-Neulat, A. Berrebi, G. Campistron, & H. Chap, Increased content of annexin II (p36) and p11 in human placenta brush-border membrane vesicles during syncytiotrophoblast maturation and differentiation, Placenta 17, 669–676 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. H.F. Cantiello, Role of the actin cytoskeleton on epithelial Na+ channel regulation, Kidney Int. 48, 970–984 (1995).

    PubMed  CAS  Google Scholar 

  25. T. Ogura, T. Furukawa, T. Toyozaki, K. Yamada, Y.J. Zheng, Y. Katayama, H. Nakaya, N. Inagaki, ClC-3B, a novel ClC-3 splicing variant that interacts with EBP50 and facilitates expression of CFTR-regulated ORCC, FASEB J. 16, 863–865 (2002).

    PubMed  CAS  Google Scholar 

  26. H.F. Cantiello, & A.G. Prat, Role of actin filament organization in ion channel activity and cell volume regulation, in Membrane Protein-Cytoskeleton Interactions, Vol. 43 (ed. Nelson, W.J.) 373–396 (Acad. Press, San Diego, 1996).

    Google Scholar 

  27. P. Janmey, The cytoskeleton and cell signaling: component localization and mechanical coupling, Physiol. Rev. 78, 763–781 (1998).

    PubMed  CAS  Google Scholar 

  28. H.F. Cantiello, J. Stow, A.G. Prat, & D.A. Ausiello, Actin filaments control epithelial Na+ channel activity, Am. J. Physiol. 261, C882–C888 (1991).

    PubMed  CAS  Google Scholar 

  29. B. Berdiev, A.G. Prat, H.F. Cantiello, D.A. Ausiello, C.M. Fuller, B. Jovov, D.J. Benos, & I.I. Ismailov, Regulation of epithelial sodium channels by short actin filaments, J. Biol. Chem. 271, 17704–17710 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. W.-H. Wang, A. Cassola, & G. Giebisch, Involvement of actin cytoskeleton in modulation of apical K+ channel activity in rat collecting duct, Am. J. Physiol. 267, F592–F598 (1994).

    PubMed  CAS  Google Scholar 

  31. H.F. Cantiello, Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator, Exp. Physiol. 83, 505–514 (1996).

    Google Scholar 

  32. E.M. Schwiebert, J.W. Mills, & B.A. Stanton, Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line, J. Biol. Chem. 269, 7081–7089 (1994).

    PubMed  CAS  Google Scholar 

  33. A. Blanchard, V. Ohanian, & D. Critchley, The structure and function of-actinin, J. Muscle Res. Cell. Motil. 10, 280–289 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. D.H. Wachsstock, W.H. Schwarz, & T.D. Pollard, Affinity of α-actinin for actin determines the structure and mechanical properties of actin filament gels, Biophys. J. 66, 205–214 (1993).

    Google Scholar 

  35. P. Matsudaira, Modular organization of actin crosslinking proteins, Trends Biol. Sci. 16, 87–92 (1991).

    Article  CAS  Google Scholar 

  36. M. Way, B. Pope, & A.G. Weeds, Evidence for functional homology in the F-actin binding domains of gelsolin and α-actinin: Implications for the requirements of severing and capping, J. Cell Biol. 119, 835–842 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. L. Hemmings, P.A. Kuhlman, & D.R. Critchley, Analysis of the actin-binding domain of α-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain, J. Cell Biol. 116, 1369–1380 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. H.F. Cantiello, A.G. Prat, J.V. Bonventre, C.C. Cunningham, J. Hartwig, & D.A. Ausiello, Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells, J. Biol. Chem. 268, 4596–4599 (1993).

    PubMed  CAS  Google Scholar 

  39. S. González-Perrett, M. Batelli, K. Kim, M. Essafi, G. Timpanaro, N. Montalbetti, I.L. Reisin, I.L. M.A. Arnaout, & H.F. Cantiello, Voltage dependence and pH regulation of human polycystin-2 mediated cation channel activity, J. Biol. Chem. 277, 24959–24966 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. I.I. Ismailov, V.G. Shlyonsky, & D.J. Benos, Streaming potential measurements in αβγ-rat epithelial Na+ channel in planar lipid bilayers, Proc. Natl. Acad. Sci. USA 94, 7651–7654 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. B. Schuster, & U.B. Sleytr, The effect of hydrostatic pressure on S-layer-supported lipid membranes, Biochim. Biophys. Acta 1563, 29–34 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. A.R. Gallagher, A. Cedzich, N. Gretz, S. Somlo, & R. Witzgall, The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton, Proc. Natl. Acad. Sci. USA 97, 4017–4022 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. Q. Li, P.Y. Shen, G. Wu, & X.Z. Chen, Polycystin-2 interacts with troponin I, an angiogenesis inhibitor, Biochemistry 42, 450–457 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Q. Li, Y. Dai, L. Guo, Y. Liu, C. Hao, G. Wu, N. Basora, M. Michalak, & X.Z. Chen, Polycystin-2 associates with tropomyosin-1, an actin microfilament component, J. Mol. Biol. 325, 949–962 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. B.K. Yoder, X. Hou, & L.M. Guay-Woodford, The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia, J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. S.M. Nauli, F.J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A.E.H. Elia, W. Lu, E.M. Bown, S.J. Quinn, D.E. Ingber, & J. Zhou, Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells, Nature Genet. 33, 129–137 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. T. Ito, Y. Masahito, & S.-I. Ohnishi, Osmoelastic coupling in biological structures: A comprehensive thermodynamic analysis of the osmotic response of phospholipid vesicles and a reevaluation of the “dehydration force” theory, Biochemistry 28, 5626–5630 (1989).

    Article  PubMed  CAS  Google Scholar 

  48. D.M. LeNeveu, & R.P. Rand, Measurement and modification of forces between lecithin bilayers, Biophys. J. 18, 209–230 (1977).

    Article  PubMed  CAS  Google Scholar 

  49. V.A. Parsegian, N. Fuller, & R.P. Rand, Measured work of deformation and repulsion of lecithin bilayers, Proc. Natl. Acad. Sci. USA 76, 2750–2754 (1979).

    Article  PubMed  CAS  Google Scholar 

  50. J. Kingdom, B. Huppertz, G. Seaward, & P. Kaufmann, Development of the placental villous tree and its consequences for fetal growth, Eur. J. Obstet. Gynecol. Reprod. Biol. 92, 35–43 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. A. Umur, M.J. Van Gemert, & M.G. Ross, Amniotic fluid and hemodynamic model in monochorionic twin pregnancies and twin-twin transfusion syndrome, Am. J. Physiol. 280, R1499–R1509 (2001).

    CAS  Google Scholar 

  52. S.J. Ladella, M.Y.C Desai, & M.G. Ross, Maternal plasma hypertonicity is accentuated in the postterm rat, Am. J. Obstet. Gynecol. 189, 1439–1444 (2003).

    Article  PubMed  Google Scholar 

  53. Q. Li, Y. Liu, P.Y. Shen, X.Q. Dai, S. Wang, L.B. Smillie, R. Sandford, & X.Z. Chen, Troponin I binds polycystin-L and inhibits its calcium-induced channel activation, Biochem. 42, 7618–7625 (2003).

    Article  CAS  Google Scholar 

  54. A.G. Prat, Y.-F. Xiao, D.A. Ausiello, & H.F. Cantiello, cAMP-independent regulation of CFTR by the actin cytoskeleton,. Am. J. Physiol. 268, C1552–C1561 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Cantiello, H.F., Montalbetti, N., Timpanaro, G.A., González-Perrett, S. (2004). Polycystin-2 as a Signal Transducer. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_22

Download citation

Publish with us

Policies and ethics