Skip to main content

Apoptosis VS. Oncosis: Role of Cell Volume and Intracellular Monovalent Cations

  • Conference paper
Cell Volume and Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((volume 559))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. E. K. Hoffmann and L. O. Simonsen, Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiol Rev 69, 315–382 (1989).

    PubMed  CAS  Google Scholar 

  2. F. Lang, G. L. Busch, M. Ritter, H. Volkl, S. Waldegger, E. Gulbins, and D. Haussinger, Functional significance of cell volume regulatory mechanisms, Physiol Rev 78(1), 247–306 (1998).

    PubMed  CAS  Google Scholar 

  3. A. A. Mongin, S. N. Orlov, Mechanisms of cell volume regulation and possible nature of the cell volume sensor, Pathophysiology 8(2), 77–88 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. T. G. Cotter, S. V. Lennon, J. G. Glynn, and S. J. Martin, Cell death via apoptosis and its relation to growth, development and differentiation of both tumor and normal cells., Anticancer Res 10(5A), 1153–1160 (1990).

    PubMed  CAS  Google Scholar 

  5. E. Duvall, A. H. Wyllie, Death and the cell, Immunol Today 7, 115–119 (1986).

    Article  CAS  Google Scholar 

  6. D. L. Vaux, A. Strasser, The molecular biology of apoptosis, Proc Natl Acad Sci USA 93, 2239–2244 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. R. Wadhwa, O. M. Pereira-Smith, R. R. Reddel, Y. Sugimoto, Y. Mitsui, and S. C. Kaul, Correlation between complementation group for immortality and the cellular distribution of mortalin, Exp Cell Res 216(1), 101–106 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. A. H. Wyllie, The 1992 Frank Rose memorial lecture, Br J Cancer 67, 205–208 (1993).

    PubMed  CAS  Google Scholar 

  9. J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics., Br J Cancer 26, 239–257 (1972).

    PubMed  CAS  Google Scholar 

  10. L. B. Jordan, D. J. Harrison, Apoptosis: a distinctive form of cell death, in: Apoptosis in Cardiac Biology, edited by H. Schunkert, G. A. J. Riegger (Kluwer Academic Publishers, Boston-Dordrecht-London, 1999), pp. 124–135.

    Google Scholar 

  11. L. F. Barros, T. Hermosilla, and J. Castro, Necrotic volume increase and the early physiology of necrosis, Comp Biochem Physiol A Mol Integr Physiol 130(3), 401–409 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. C. D. Bortner, J. A. Cidlowski, Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes, Am J Physiol 271, C950–C961 (1996).

    PubMed  CAS  Google Scholar 

  13. C. D. Bortner, J. A. Cidlowski, A necessary role for cell shrinkage in apoptosis, Biochem Pharmacol 56, 1549–1559 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. Y. Okada, E. Maeno, T. Shimizu, K. Dezaki, J. Wang, and S. Morishima, Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD), J Physiol 532 (Pt 1), 3–16 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. S. N. Orlov, T. V. Dam, J. Tremblay, and P. Hamet, Apoptosis in vascular smooth muscle cells: role of cell shrinkage, Biochem Biophys Res Commun 221(3), 708–715 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. G. I. Evan, A. H. Wyllie, C. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, C. M. Waters, L. Z. Penn, and D. C. Hancock, Induction of apoptosis in fibroblasts by c-myc protein, Cell 69(1), 119–128 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. M. R. Bennett, G. I. Evan, and A. C. Newby, Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-, heparin, and cyclic nucleotide analogues and induces apoptosis., Circ Res 74, 525–536 (1994).

    PubMed  CAS  Google Scholar 

  18. M. R. Bennett, G. I. Evan, and S. M. Schwartz, Apoptosis of rat vascular smooth muscle cells is regulated by p53 dependent and independent pathways., Circ Res 77, 266–273 (1995).

    PubMed  CAS  Google Scholar 

  19. S. N. Orlov, D. Pchejetski, S. Taurin, N. Thorin-Trescases, G. V. Maximov, A. V. Pshezhetsky, A. B. Rubin, and P. Hamet, Apoptosis in serum-deprived vascular smooth muscle cells: evidence for cell volumeindependent mechanism, Apoptosis 9, 55–56 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. S. N. Orlov, N. Thorin-Trescases, T. V. Dam, M. A. Fortuno, N. O. Dulin, J. Tremblay, and P. Hamet, Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth cells in a site upstream of caspase-3, Cell Death Differ 6(7), 661–672 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. S. N. Orlov, N. Thorin-Trescases, S. V. Kotelevtsev, J. Tremblay, and P. Hamet, Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3, J Biol Chem 274(23), 16545–16552 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. M. R. Bennett, K. MacDonald, S.-W. Chan, J. P. Luzio, R. Simari, and P. Weissberg, Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis, Science 282, 290–293 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. S. N. Orlov, D. Pchejetski, S. Der Sarkissian, V. A. Adarichev, S. Taurin, A. V. Pshezhetsky, J. Tremblay, G. V. Maximov, D. deBlois, M. R. Bennett, and P. Hamet, [3H]Thymidine labelling of DNA triggers apoptosis potentiated by E1A-adenoviral protein, Apoptosis 8, 199–208 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. N. K. Isaev, E. V. Stelmashook, A. Halle, C. Harms, M. Lautenschlager, M. Weih, U. Dirnagl, I. V. Victorov, and D. B. Zorov, Inhibition of Na(+),K(+)-ATPase activity in cultured rat cerebellar granule cells prevents the onset of apoptosis induced by low potassium, Neurosci Lett 283(1), 41–44 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. X. Zhou, G. Jiang, A. Zhao, T. Bondeva, P. Hirszel, and T. Balla, Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells, Biochem Biophys Res Commun 285(1), 46–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. S. N. Orlov, S. Taurin, N. Thorin-Trescases, N. O. Dulin, J. Tremblay, and P. Hamet, Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis, Hypertension 35(5), 1062–1068 (2000).

    PubMed  CAS  Google Scholar 

  27. S. N. Orlov, S. Taurin, J. Tremblay, and P. Hamet, Inhibition of Na+-K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodelling, J Hypertens 19, 1559–1565 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. S. Taurin, V. Seyrantepe, S. N. Orlov, T. L. Tremblay, P. Thibault, M. R. Bennett, P. Hamet, and A. V. Pshezhetsky, Proteome analysis and functional expression identify mortalin as an antiapoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells, Circ Res 91(10), 915–922 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. S. Takano, R. Wadhwa, Y. Yoshii, T. Nose, S. C. Kaul, and Y. Mitsui, Elevated level of mortalin expression in human brain tumors, Exp Cell Res 237(1), 38–45 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. R. Wadhwa, S. Takano, Y. Mitsui, and S. C. Kaul, NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 protein, Cell Res 9(4), 261–269 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. R. Wadhwa, S. Takano, M. Robert, A. Yoshida, H. Nomura, R. R. Reddel, Y. Mitsui, and S. C. Kaul, Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member, J Biol Chem 273(45), 29586–29591 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. S. Taurin, P. Hamet, and S. N. Orlov, Na/K pump and intracellular monovalent cations: novel mechanism of excitation-transcription coupling involved in inhibition of apoptosis, Mol Biol 37(3), 371–381 (2003).

    Article  CAS  Google Scholar 

  33. Z. Xie, A. Askari, Na+/K+-ATPase as a signal transducer, Eur J Biochem 269, 2434–2439 (2003).

    Article  CAS  Google Scholar 

  34. Y. Nakagawa, E. F. Petricoin, H. Akai, P. M. Grimley, B. Rupp, and A. C. Larner, Interferon-alpha-induced gene expression: evidence for a selective effect on activation of the ISGF3 transcription complex, Virology 190, 210–220 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. Y. Nakagawa, V. Rivera, and A. C. Larner, A role for the Na/K-ATPase in the control of human c-fos and c-jun transcription, J Biol Chem 267(13), 8785–8788 (1992).

    PubMed  CAS  Google Scholar 

  36. S. Numazawa, N. Inoue, H. Nakura, T. Sugiyama, E. Fujino, M. Shinoki, T. Yoshida, and Y. Kuroiwa, A cardiotonic steroid bufalin-induced differentiation of THP-1 cells. Involvement of Na+,K(+)-ATPase inhibition in the early changes in proto-oncogene expression, Biochem Pharmacol 52(2), 321–329 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. M. Joannidis, L. G. Cantley, K. Spokes, A. K. Stuart-Tilley, S. L. Alper, and F. H. Epstein, Modulation of c-fos and egr-1 expression in the isolated perfused kidney by agents that alter tubular work, Kidney Int 52(1), 130–139 (1997).

    PubMed  CAS  Google Scholar 

  38. M. Peng, L. Huang, Z. Xie, W. H. Huang, and A. Askari, Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of early-response genes in cardiac myocytes, J Biol Chem 271(17), 10372–10378 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. Z. Xie, P. Kometiani, J. Liu, J. I. Shapiro, and A. Askari, Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes, J Biol Chem 274, 19323–19328 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. S. Taurin, N. O. Dulin, D. Pchejetski, R. Grygorczyk, J. Tremblay, P. Hamet, and S. N. Orlov, c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellularsodium-mediated, calcium-independent mechanism, J Physiol 543 (Pt 3), 835–847 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. D. Pchejetski, S. Taurin, S. Der Sarkissian, O. D. Lopina, A. V. Pshezhetsky, J. Tremblay, D. deBlois, P. Hamet, and S. N. Orlov, Inhibition of Na+-K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio, Biochem Biophys Res Commun 301, 735–744 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. A. D. C. Macknight, A. Leaf, Regulation of cell volume, Physiol Rev 57, 510–573 (1977).

    PubMed  CAS  Google Scholar 

  43. T. Akera, Y.-C. Ng, I. S. Shien, E. Bero, T. M. Brody, and W. E. Braselton, Effects of K+ on the interaction between cardiac glycosides and Na,K-ATPase, Eur J Pharmacol 111, 147–157 (1985).

    Article  PubMed  CAS  Google Scholar 

  44. J. B. Lingrel, M. L. Croyle, and J. M. Argüello, Ligand binding sites of Na,K-ATPase, Acta Physiol Scand 163(Suppl. 643), 69–77 (1998).

    CAS  Google Scholar 

  45. E. T. Wallick, A. Schwartz, Interaction of cardiac glycosides with Na+-K+-ATPase, Methods in Enzymology 156, 201–213 (1988).

    PubMed  CAS  Google Scholar 

  46. A. M. Malek, G. G. Goss, L. Jiang, S. Izumo, and S. L. Alper, Mannitol at clinical concentrations activates multiple signaling pathways and induces apoptosis in endothelial cells, Stroke 29(12), 2631–2640 (1998).

    PubMed  CAS  Google Scholar 

  47. L. Michea, D. R. Ferguson, E. M. Peters, P. M. Andrews, M. R. Kirby, and M. B. Burg, Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells, Am J Physiol Renal Physiol 278(2), F209–F218 (2000).

    PubMed  CAS  Google Scholar 

  48. A. J. Bilney, A. W. Murray, Pro-and anti-apoptotic effects of K+ in HeLa cells, FEBS Lett 424(3), 221–224 (1998).

    Article  PubMed  CAS  Google Scholar 

  49. C. C. Matthew, E. L. Feldman, Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cell from hyperosmotic induced programmed cell death, J Cell Physiol 166, 323–331 (1996).

    Article  Google Scholar 

  50. S. Wesselborg, D. Kaberlitz, Activation-driven death of human T cell clones: time course kinetics of the induction of cell shrinkage, DNA fragmentation, and cell death, Cell Immunol 148(1), 234–241 (1993).

    Article  PubMed  CAS  Google Scholar 

  51. E. Maeno, Y. Ishizaki, T. Kanaseki, A. Hazama, and Y. Okada, Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis, Proc Natl Acad Sci USA 97, 9487–9492 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. H. Ohyama, T. Yamada, and I. Watanabe, Cell volume reduction associated with interphase death in rat thymocytes, Radiat Res 85, 333–339 (1981).

    Article  PubMed  CAS  Google Scholar 

  53. C. D. Bortner, J. A. Cidlowski, Caspase independent/dependent regulation of K+, cell shrinkage and mitochondrial membrane potential during lymphocyte apoptosis, J Biol Chem 274, 21953–21962 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. C. D. Bortner, F. M. Hughes, and J. A. Cidlowski, A primary role for K+ and Na+ efflux in activation of apoptosis, J Biol Chem 272, 32436–32442 (1997).

    Article  PubMed  CAS  Google Scholar 

  55. C. S. I. Nobel, J. K. Aronson, D. J. van den Dobbelsteen, and A. F. G. Slater, Inhibition of Na+/K+-ATPase may be one mechanism contributing to potassium efflux and cell shrinkage in CD995-induced apoptosis, Apoptosis 5(2), 153–163 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. S. N. Orlov, J. Tremblay, and P. Hamet, Cell volume in vascular smooth muscle cells is regulated by bumetanide-sensitive ion transport., Am J Physiol 270, C1388–C1397 (1996).

    PubMed  CAS  Google Scholar 

  57. R. S. Benson, S. Heer, C. Dive, and A. J. Watson, Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis, Am J Physiol 270, C1190–C1203 (1996).

    PubMed  CAS  Google Scholar 

  58. A. Y. Xiao, L. Wei, S. Xia, S. Rothman, and S. P. Yu, Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurones, J Neurosci 22, 1350–1362 (2002).

    PubMed  CAS  Google Scholar 

  59. M. Gomez-Angelats, C. D. Bortner, and J. A. Cidlowski, Protein kinase C (PKC) inhibits Fas receptorinduced apoptosis through modulation of the loss of K+ and cell shrinkage, J Biol Chem 275, 19609–19619 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. F. M. Hughes, C. D. Bortner, G. D. Purdy, and J. A. Cidlowski, Intracellular K+ suppresses the activation of apoptosis in lymphocytes, J Biol Chem 272, 30567–30576 (1997).

    Article  PubMed  CAS  Google Scholar 

  61. G. Barbiero, F. Duranti, G. Bonelli, J. S. Amenta, and F. M. Baccino, Intracellular ionic variations in the apoptotic death of cells by inhibitors of cell cycle progression, Exp Cell Res 217, 410–418 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. A. Minta, R. Y. Tsien, Fluorescent indicators for cytosolic sodium, J Biol Chem 264, 19449–19457 (1989).

    PubMed  CAS  Google Scholar 

  63. L. V. Colom, M. E. Diaz, D. R. Beers, A. Neely, W. J. Xie, and S. H. Appel, Role of potassium in amyloidinduced cell death, J Neurochem 70, 1925–1934 (1998).

    Article  PubMed  CAS  Google Scholar 

  64. S. Krick, O. Platoshyn, M. Sweeney, H. Kim, and J. X. J. Yuan, Activation of K+ channels induces apoptosis in vascular smooth muscle cells, Am J Physiol 280, C970–C979 (2001).

    CAS  Google Scholar 

  65. H. H. Nietsch, M. W. Roe, J. F. Fiekers, A. L. Moore, and S. D. Lidofsky, Activation of potassium and chloride channels by tumor necrosis factor α, J Biol Chem 275, 20556–20561 (2000).

    Article  PubMed  CAS  Google Scholar 

  66. L. Wang, D. Xu, W. Dai, and L. Lu, An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells, J Biol Chem 274, 3678–3685 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. S. P. Yu, C. H. Yeh, S. L. Sensi, B. J. Gwag, L. M. Canzoniero, Z. S. Farhangrazi, H. S. Ying, M. Tian, L. L. Dugan, and D. W. Choi, Mediation of neuronal apoptosis by enhancement of outward potassium current, Science 278(5335), 114–117 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. M. J. Mann, V. J. Dzau, Therapeutic applications of transcription factor decoy oligonucleotides, J Clin Invest 106, 1071–1075 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. I. Szabo, E. Gulbins, H. Apfel, X. Zhang, P. Barth, A. E. Busch, K. Schlottmann, O. Pongs, and F. Lang, Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation, J Biol Chem 271, 20465–20469 (1996).

    Article  PubMed  CAS  Google Scholar 

  70. E. Gulbins, I. Szabo, K. Baltzer, and F. Lang, Ceramide-induced inhibition of T-lymphocyte voltage gated potassium channel is mediated by tyrosine kinases, Proc Natl Acad Sci USA 94, 7661–7666 (1997).

    Article  PubMed  CAS  Google Scholar 

  71. R. A. Gottlieb, A. Dosanjih, Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis, Proc Natl Acad Sci USA 93, 3587–3591 (2001).

    Article  Google Scholar 

  72. I. Szabo, A. Lepple-Wienhues, K. N. Kaba, M. Zoratti, E. Gulbins, and F. Lang, Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T-lymphocytes, Proc Natl Acad Sci USA 95, 6169–6174 (1998).

    Article  PubMed  CAS  Google Scholar 

  73. K. S. Lang, C. Duranton, H. Poehlmann, S. Myssina, C. Bauer, F. Lang, T. Wieder, and S. M. Huber, Cation channels trigger apoptotic death of erythrocytes, Cell Death Differ 10(2), 249–256 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. H. Pasantes-Morales, R. M. del Rio, Taurine and mechanisms of cell volume regulation, in: Taurine: Functional Neurochemistry, Physiology and Cardiology, edited by R. Cohen (Wiley-Liss Inc., New York, 1990), pp. 317–328.

    Google Scholar 

  75. F. Lang, J. Madlung, A. C. Uhlemann, T. Risler, and E. Gulbins, Cellular taurine release triggered by stimulation of the FAS (CD95) receptor in Jurkat lymphocytes, Pflugers Arch 436(3), 377–383 (1998).

    Article  PubMed  CAS  Google Scholar 

  76. J. Moran, X. Hernandez-Pech, H. Merchant-Larios, and H. Pasantes-Morales, Release of taurine in apoptotic cerebellar granule neurones in culture, Pflugers Arch 439(3), 271–277 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Q. D. Wu, J. H. Wang, F. Fennesy, H. P. Redmond, and D. Bouchier-Hayes, Taurine prevents highglucose-induced human vascular endothelial cell apoptosis, Am J Physiol 277, C1229–C1238 (1999).

    PubMed  CAS  Google Scholar 

  78. J. B. Smith, M. B. Wade, N. S. Fineberg, and M. H. Weinberger, Influence of race, sex, and blood pressure on erythrocyte sodium transport in humans, Hypertension 12(3), 251–258 (1988).

    PubMed  CAS  Google Scholar 

  79. F. Beauvais, L. Michel, and L. Dubertret, Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis, J Leukoc Biol 57, 851–855 (1995).

    PubMed  CAS  Google Scholar 

  80. B. Dallaporta, P. Marchetti, M. A. de Pablo, C. Maisse, H. T. Duc, D. Métivier, N. Zamzani, M. Geuskens, and G. Kroemer, Plasma membrane potential in thymocyte apoptosis, J Immunol 162, 6534–6542 (1999).

    PubMed  CAS  Google Scholar 

  81. P. A. Doris, Abnormalities of sodium pump function in hypertension and the role of endogenous cardiotonic steroids, Cell Mol Biol 47(2), 391–401 (2001).

    PubMed  CAS  Google Scholar 

  82. E. Berendes, P. Cullen, H. van Aken, W. Zidek, M. Erren, M. Hubschen, T. Weber, S. Wirtz, M. Tepel, and M. Walter, Endogenous glycosides in critically ill patients, Crit Care Med 31, 1331–1337 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Orlov, S.N., Hamet, P. (2004). Apoptosis VS. Oncosis: Role of Cell Volume and Intracellular Monovalent Cations. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_21

Download citation

Publish with us

Policies and ethics