Skip to main content

The Balancing Act of the Naked Cell

A brief history of membrane regulation of animal cell volume before 1978

  • Conference paper
Cell Volume and Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((volume 559))

  • 1019 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. A.D.C. MacKnight, and A. Leaf, Regulation of cellular volume, Physiol. Rev. 57, 510–572 (1977).

    PubMed  CAS  Google Scholar 

  2. E.K. Hoffmann, Control of cell volume, in: Transport of Ions and Water, edited by B. Gupta, J. Oschmann, and B. Wall, (Academic Press, New York) pp.285–332 (1977).

    Google Scholar 

  3. E.N. Harvey, A determination of the tension of the surface of the eggs of the annelid, Chaetopterus, Biol. Bull. 60, 67–71 (1931).

    Google Scholar 

  4. E.N. Harvey, The tension at the surface of marine eggs, especially those of the sea urchin, Arbacia, Biol. Bull. 61, 273–279 (1931).

    Google Scholar 

  5. E.N. Harvey, A microscope-centrifuge, Science, 72, 42–44 (1930).

    Article  PubMed  Google Scholar 

  6. E. Ponder, The spherical form of the mammalian erythrocyte III. Changes in surface area in disks and spheres, J. Exp. Biol. 14, 267–277 (1937).

    Google Scholar 

  7. E.A. Evans, and R.M. Hochmuth, Membrane viscoelasticity, Biophys. J. 16, 1–11 (1976).

    PubMed  CAS  Google Scholar 

  8. D.D. van Slyke, H. Wu, and F.C. McLean, Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood, J. Biol. Chem. 56, 765–849 (1923).

    Google Scholar 

  9. J.P. Peters, Water exchange, Physiol. Rev. 24, 491–531 (1944).

    CAS  Google Scholar 

  10. J.R. Robinson, Secretion and transport of water, SEB Symp. 8, 42–62 (1954).

    CAS  Google Scholar 

  11. J.A. Kitching, Osmoregulation and ionic regulation in animals without kidneys, SEB Symp. 8, 63–75 (1954).

    CAS  Google Scholar 

  12. R.H. Maffly and A. Leaf, The potential of water in mammalian tissues, J. Gen. Physiol. 47, 1257–1275 (1959).

    Article  Google Scholar 

  13. J.W.T. Appelboom, W. A. Brodsky, W. S. Tuttle, and I. Diamond, The freezing point depression of mammalian tissues after sudden heating in boiling distilled water, J. Gen. Physiol. 41, 1153–1169 (1958).

    Article  PubMed  CAS  Google Scholar 

  14. J.R. Robinson, Metabolism of intracellular water, Physiol. Rev. 40, 112–149 (1960).

    PubMed  CAS  Google Scholar 

  15. H. Wu, Note on Donnan equilibrium and osmotic pressure relationship between the cells and the serum, J. Biol Chem. 70, 203–205 (1926).

    CAS  Google Scholar 

  16. A. Kleinzeller, Charles Ernest Overton’s concept of a cell membrane, Curr. Topics in Membranes 48, 1–22 (1999).

    Google Scholar 

  17. P.J. Boyle, and E. J. Conway, Potassium accumulation in muscle and associated changes, J. Physiol. Lond. 100, 1–63 (1941).

    PubMed  CAS  Google Scholar 

  18. H B. Steinbach, Sodium and potassium in frog muscle, J. Biol. Chem. 133, 695–701 (1940).

    CAS  Google Scholar 

  19. R. Dean, Theories of electrolyte equilibrium in muscle, Biol. Symposia 3, 331–348 (1941).

    CAS  Google Scholar 

  20. G. Mudge, Electrolyte and water metabolism of rabbit kidney slices: Effect of metabolic inhibitors, Am. J. Physiol. 167, 206–223 (1951).

    PubMed  CAS  Google Scholar 

  21. A. Leaf, On the mechanism of fluid exchange of tissues in vitro, Biochem. J. 62, 241–248 (1956).

    PubMed  CAS  Google Scholar 

  22. R H. Rixon, and J.A.F. Stevenson, Movements of sodium, potassium and water in rat diaphragm in vitro, Am. J. Physiol. 194, 363–368 (1958).

    PubMed  CAS  Google Scholar 

  23. A. Leaf, Maintenance of concentration gradients and regulation of cell volume, Ann., N. Y. Acad. Sci. 72, 396–404 (1959).

    CAS  Google Scholar 

  24. D.C. Tosteson, and J.F. Hoffman, Regulation of cell volume by active cation transport in high and low potassium sheep red cells, J. Gen. Physiol. 44, 169–194 (1960).

    Article  PubMed  CAS  Google Scholar 

  25. A. Kleinzeller, and A. Knotkova, The effect of ouabain on the electrolyte and water transport in kidney cortex and liver slices, J. Physiol. Lond. 175, 172–192 (1964).

    PubMed  CAS  Google Scholar 

  26. G. Whittembury, Sodium extrusion and potassium uptake in guinea pig kidney cortex slices, J. Gen. Physiol. 48, 699–717 (1965).

    Article  PubMed  CAS  Google Scholar 

  27. J.S. Willis, Characteristics of ion transport in kidney cortex of mammalian hibernators, J. Gen. Physiol. 49, 1221–1299 (1966).

    PubMed  CAS  Google Scholar 

  28. J.S. Willis, The interaction of K+, ouabain and Na+ on the cation transport and respiration of renal cortical slices of hamsters and ground squirrels, Biochim. Biophys. Acta 163, 516–530 (1968).

    Article  PubMed  CAS  Google Scholar 

  29. A.D.C. MacKnight, Water and electrolyte contents of rat renal cortical slices incubated in potassium-free media and media containing ouabain, Biochim. Biophys. Acta 150, 263–270 (1968).

    Article  PubMed  CAS  Google Scholar 

  30. G. Whittembury and F. Proverbio, Two modes of Na extrusion in cells from guinea pig kidney cortex slices, Pflug. Archiv. 316, 1–25 (1970).

    Article  CAS  Google Scholar 

  31. J. Hoffman and F. Kregenow, The characterization of new energy dependent cation transport processes in red blood cells, Ann. N. Y. Acad. Sci. 137, 566–576 (1966).

    PubMed  CAS  Google Scholar 

  32. J.C. Parker, Solute and water transport in dog and cat red blood cells, in: Membrane Transport in Red Blood Cells, edited by J. C. Ellory and V. L. Lew (Academic Press, London) pp. 427–465 (1977).

    Google Scholar 

  33. F.M. Kregenow, Transport in avian red cells, in: Membrane Transport in Red Blood Cells, edited by J.C. Ellory and V.L. Lew (Academic Press, London) pp. 383–465 (1977).

    Google Scholar 

  34. S.D. Knutton, D. Jackson, J.M. Graham, K.J. Micklem, and C.A. Pasternak, Microvilli and cell swelling, Nature 262, 52–54 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. S. Richter, J. Hamann, and I. Bernhardt, The monovalent cation “leak” transport in human erythrocytes: An electroneutral exchange process, Biophys. J. 73, 733–745 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. R. Allen, The contractile vacuole and its membrane dynamics, BioEssays 22, 1035–1042 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. J. Heuser, Q. Zhu, and M. Clarke, Proton pumps populate the contractile vacuoles of Dictyostelium amoebae, J. Cell Biol. 121, 1311–1327 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. C. Stock, H.K. Gronlien, R.D. Allen, and Y. Naitoh, Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole, J. Cell Sci. 115, 2339–2348 (2002).

    PubMed  CAS  Google Scholar 

  39. R. Docampo, and C.N.J. Moreno, The acidocalcisome, Molec. Biochem. Parasit. 33, 151–159 (2001).

    Article  Google Scholar 

  40. G.D.V. van Rossum, M.A. Russo, and J.C. Schisselbauer, Role of cytoplasmic vesicles in volume maintenance, Curr. Topics in Membranes and Transport 30, 45–74 (1987).

    Google Scholar 

  41. G.D.V. van Rossum and J. Wadsworth, Role of intracellular organelles in the control of cell pH and volume, Acta Medica Romana 39, 221–237 (2001).

    Google Scholar 

  42. M. Marjanovic and J.S. Willis, ATP dependence of Na+-K+-pump of cold-sensitive and cold-tolerant mammalian red blood cells, J. Physiol. Lond. 456, 575–590 (1991).

    Google Scholar 

  43. J.S. Willis, On thermal stability of cation gradients in mammalian cells, Advances in Molecular and Cell Biology, 19, 193–222 (1997).

    Article  CAS  Google Scholar 

  44. J.. Willis and G.L. Anderson, Activation of K-Cl cotransport by mild warming in guinea pig red cells, J. Membrane Biol. 163, 193–203 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Willis, J.S. (2004). The Balancing Act of the Naked Cell. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_1

Download citation

Publish with us

Policies and ethics