Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Abarzua P, LoSardo JE, Gubler ML, & Neri A. (1995). Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Res, 55 :3490–94.

    PubMed  CAS  Google Scholar 

  • Abarzua P, LoSardo JE, Gubler ML, et al., (1996). Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene, 13 :2477–82.

    PubMed  CAS  Google Scholar 

  • Achison M & Hupp TR. (2003). Hypoxia attenuates the p53 response to cellular damage. Oncogene, 22:3431–40.

    Article  PubMed  CAS  Google Scholar 

  • Adams PD, Li X, Sellers WR, et al., (1999). Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol Cell Biol, 19:1068–80.

    PubMed  CAS  Google Scholar 

  • Arris CE, Boyle FT, Calvert AH, et al., (2000). Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles. J Med Chem, 43:2797–804.

    Article  PubMed  CAS  Google Scholar 

  • Ball KL, Lain S, Fahraeus R, et al., (1997). Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Curr Biol, 7:71–80.

    Article  PubMed  CAS  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, et al., (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell, 8:1243–54.

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, & Lukas J. (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 3:421–29.

    Article  PubMed  CAS  Google Scholar 

  • Bell S, Klein C, Muller L, et al., (2002). p53 contains large unstructured regions in its native state. J Mol Biol, 322:917–27.

    Article  PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Toretsky J, Bohen S, & Neckers L. (1996). Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci USA, 93:8379–83.

    Article  PubMed  CAS  Google Scholar 

  • Blandino G, Levine AJ, & Oren M. (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 18:477–85.

    Article  PubMed  CAS  Google Scholar 

  • Blaydes JP, Craig AL, Wallace M, et al., (2000). Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways. Oncogene, 19:3829–339.

    Article  PubMed  CAS  Google Scholar 

  • Blaydes JP, Luciani MG, Pospisilova S, et al., (2001). Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-dependent transcription. J Biol Chem, 276:4699–708.

    Article  PubMed  CAS  Google Scholar 

  • Brown CR, Hong-Brown LQ, & Welch WJ. (1997). Correcting temperature-sensitive protein folding defects. J Clin Invest, 99:1432–44.

    PubMed  CAS  Google Scholar 

  • Bullock AN, Henckel J, DeDecker BS, et al., (1997). Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci USA, 94:14338–42.

    Article  PubMed  CAS  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, et al., (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest, 104:263–9.

    Article  PubMed  CAS  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, et al., (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med, 8:282–8.

    Article  PubMed  CAS  Google Scholar 

  • Bykov VJ, Selivanova G, & Wiman KG. (2003). Small molecules that reactivate mutant p53. Eur J Cancer, 39:1828–34.

    Article  PubMed  CAS  Google Scholar 

  • Chan HM, & La Thangue NB. (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 114:2363–73.

    PubMed  CAS  Google Scholar 

  • Chene P. (2003). Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer, 3:102–9.

    Article  PubMed  CAS  Google Scholar 

  • Cosulich SC, Worrall V, Hedge PJ, et al., (1997). Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol, 7:913–20.

    Article  PubMed  CAS  Google Scholar 

  • Craig A, Scott M, Burch L, et al., (2003). Allosteric effects mediate CHK2 phosphorylation of the p53 transactivation domain. EMBO J, 4:787–92.

    Article  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, et al., (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Dornan D, & Hupp TR. (2001). Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO, 2:139–44.

    Article  CAS  Google Scholar 

  • Dornan D, Shimizu H, Burch L, et al., (2003a). The proline-repeat domain of p53 binds directly to the transcription coactivator p300 and allosterically mediates DNA-dependent acetylation. Mol Cell Biol, 23:8846–61.

    Article  PubMed  CAS  Google Scholar 

  • Dornan D, Shimizu H, Perkins ND, & Hupp TR. (2003b). DNA-dependent Acetylation of p53 by the Transcription Coactivator p300. J Biol Chem, 278:13431–41.

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP. (2000). p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta, 1471:M43–56.

    PubMed  CAS  Google Scholar 

  • Dyson HJ, & Wright PE. (2002). Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem, 62:311–40.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson M, Luciani MG, Finlan L, et al., (2004). The development of a CDK2-docking site peptide that inhibits p53 and sensitizes cells to death. Cell Cycle, 3:80–9.

    PubMed  CAS  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, & Rastinejad F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science, 286:2507–10.

    Article  PubMed  CAS  Google Scholar 

  • Friedler A, Hansson LO, Veprintsev DB, et al., (2002). A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA, 99:937–92.

    Article  PubMed  CAS  Google Scholar 

  • Galigniana MD, Harrell JM, O’Hagen HM, et al., (2004). Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. J Biol Chem, 279:22483–9.

    Article  PubMed  CAS  Google Scholar 

  • Gannon JV, Greaves R, Iggo R, & Lane DP. (1990). Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J, 9:1595–602.

    PubMed  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, et al., (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300:489–92.

    Article  PubMed  CAS  Google Scholar 

  • Giannakakou P, Nakano M, Nicolaou KC, et al., (2002). Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA, 99:10855–60.

    Article  PubMed  CAS  Google Scholar 

  • Giannakakou P, Sackett DL, Ward Y, et al., (2000). p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol, 2:709–17.

    Article  PubMed  CAS  Google Scholar 

  • Gibson AE, Arris CE, Bentley J, et al., (2002). Probing the ATP ribose-binding domain of cyclin-dependent kinases 1 and 2 with O(6)-substituted guanine derivatives. J Med Chem, 45:3381–93.

    Article  PubMed  CAS  Google Scholar 

  • Grossman SR. (2001). p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem, 268:2773–8.

    Article  PubMed  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, & Oren M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387:296–9.

    Article  PubMed  CAS  Google Scholar 

  • Hietanen S, Lain S, Krausz E, et al., (2000). Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci USA, 97:8501–06.

    Article  PubMed  CAS  Google Scholar 

  • Honorio S, Agathanggelou A, Wernert N, et al., (2003). Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours. Oncogene, 22:461–6.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU & Hayer-Hartl M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295:1852–8.

    Article  PubMed  CAS  Google Scholar 

  • Hupp TR, Sparks A, & Lane DP. (1995). Small peptides activate the latent sequence-specific DNA binding function of p53. Cell, 83:237–45.

    Article  PubMed  CAS  Google Scholar 

  • Janknecht R. (2002). The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histol Histopathol, 17:657–68.

    PubMed  CAS  Google Scholar 

  • Jones JM, Cui XS, Medina D, & Donehower LA. (1999). Heterozygosity of p21WAF1/CIP1 enhances tumor cell proliferation and cyclin D1-associated kinase activity in a murine mammary cancer model. Cell Growth Differ, 10:213–22.

    PubMed  CAS  Google Scholar 

  • Jones PA. (2003). An epigenetic approach for finding tumor suppressors. Cell Cycle, 2: 25–6.

    PubMed  CAS  Google Scholar 

  • Kannan K, Amariglio N, Rechavi G, et al., (2001a). DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene, 20:2225–34.

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Kaminski N, Rechavi G, et al., (2001b). DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene, 20:3449–55.

    Article  PubMed  CAS  Google Scholar 

  • Kim AL, Raffo AJ, Brandt-Rauf PW, et al., (1999). Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J Biol Chem, 274, 34924–31.

    Article  PubMed  CAS  Google Scholar 

  • Kontopidis G, Andrews MJ, McInnes C, et al., (2003). Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange. Structure (Camb), 11:1537–46.

    Article  CAS  Google Scholar 

  • Koumenis C, Alarcon R, Hammond E, et al., (2001). Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol, 21:1297–310.

    Article  PubMed  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, & Vousden KH. (1997). Regulation of p53 stability by Mdm2. Nature, 387:299–303.

    Article  PubMed  CAS  Google Scholar 

  • Kung AL, Wang S, Klco JM, et al., (2000). Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med, 6:1335–40.

    Article  PubMed  CAS  Google Scholar 

  • Luciani MG, Hutchins JR, Zheleva D, & Hupp TR. (2000). The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. J Mol Biol, 300:503–18.

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Hunt SL, Sotillo R, et al., (2003). Driving the cell cycle to cancer. Adv Exp Med Biol, 532:1–11.

    PubMed  CAS  Google Scholar 

  • McClue SJ, Blake D, Clarke R, et al., (2002). In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer, 102:463–8.

    Article  PubMed  CAS  Google Scholar 

  • Meijer L, Borgne A, Mulner O, et al., (1997). Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem, 243:527–36.

    Article  PubMed  CAS  Google Scholar 

  • Migliorini D, Denchi EL, Danovi D, et al., (2002). Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol, 22:5527–38.

    Article  PubMed  CAS  Google Scholar 

  • Milner J & Medcalf EA. (1991). Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell, 65:765–74.

    Article  PubMed  CAS  Google Scholar 

  • Momand J, Jung D, Wilczynski S, & Niland J. (1998). The MDM2 gene amplification database. Nucleic Acids Res, 26:3453–59.

    Article  PubMed  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, et al., (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69:1237–45.

    Article  PubMed  CAS  Google Scholar 

  • Murphy M, Ahn J, Walker KK, et al., (1999). Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev, 13:2490–501.

    Article  PubMed  CAS  Google Scholar 

  • Neckers L. (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med, 8:S55–61.

    Article  PubMed  CAS  Google Scholar 

  • Neckers L. (2003). Development of small molecule hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem, 10:733–9.

    Article  PubMed  CAS  Google Scholar 

  • Noble ME, Endicott JA, & Johnson LN. (2004). Protein kinase inhibitors: insights into drug design from structure. Science, 303:1800–05.

    Article  PubMed  CAS  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, et al., (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat, 19:607–14.

    Article  PubMed  CAS  Google Scholar 

  • Pinhasi-Kimhi O, Michalovitz D, Ben-Zeev A, & Oren M. (1986). Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature, 320:182–4.

    Article  PubMed  CAS  Google Scholar 

  • Pohler E, Craig A, Cotton J, et al., (2004). The Barrett’s antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Mol Cell Proteomics. (in press).

    Google Scholar 

  • Raveh T, Droguett G, Horwitz MS, et al., (2001). DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol, 3:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Rippin TM, Bykov VJ, Freund SM, et al., (2002). Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene, 21:2119–29.

    Article  PubMed  CAS  Google Scholar 

  • Roth JF, Shikama N, Henzen C, et al., (2003). Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5. EMBO J, 22:5186–96.

    Article  PubMed  CAS  Google Scholar 

  • Sakhi S, Bruce A, Sun N, et al., (1994). p53 induction is associated with neuronal damage in the central nervous system. Proc Natl Acad Sci USA, 91:7525–29.

    Article  PubMed  CAS  Google Scholar 

  • Sangster TA, Lindquist S, & Queitsch C. (2004). Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays, 26:348–62.

    Article  PubMed  CAS  Google Scholar 

  • Scott MT, Ingram A, & Ball KL. (2002). PDK1-dependent activation of atypical PKC leads to degradation of the p21 tumour modifier protein. EMBO J, 21:6771–80.

    Article  PubMed  CAS  Google Scholar 

  • Selivanova G, Iotsova V, Okan I, et al., (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med, 3:632–8.

    Article  PubMed  CAS  Google Scholar 

  • Shieh SY, Ahn J, Tamai K, et al., (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev, 14:289–300.

    PubMed  CAS  Google Scholar 

  • Shikama N, Lutz W, Kretzschmar R, et al., (2003). Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J, 22:5175–85.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Burch LR, Smith AJ, et al., (2002). The conformationally flexible S9–S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J Biol Chem, 277:28446–58.

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, & Lu X. (2003). The ASPP family: deciding between life and death after DNA damage. Toxicol Lett, 139:81–7.

    Article  PubMed  CAS  Google Scholar 

  • Strichman-Almashanu LZ, Lee RS, Onyango PO, et al., (2002). A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res, 12:543–54.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Gabrielson E, Chen W, et al., (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet, 31:141–9.

    Article  PubMed  CAS  Google Scholar 

  • Takai H, Naka K, Okada Y, et al., (2002). Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J, 21:5195–205.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, et al., (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 303:844–48.

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, & Levine AJ. (2000). Surfing the p53 network. Nature, 408:307–10.

    Article  PubMed  CAS  Google Scholar 

  • Wagner GP, Chiu CH, & Hansen TF. (1999). Is Hsp90 a regulator of evolvability? J Exp Zool, 285:116–18.

    Article  PubMed  CAS  Google Scholar 

  • Waki T, Tamura G, Sato M, & Motoyama T. (2003). Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene, 22:4128–33.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Takimoto R, Rastinejad F, & El-Deiry WS. (2003). Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol, 23:2171–81.

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Sutphin P, An WG, et al., (1997). Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene, 14:2809–16.

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Sutphin PD, Pulcini EJ, et al., (1998). The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol, 18:1517–24.

    PubMed  CAS  Google Scholar 

  • Woods DB & Vousden KH. (2001). Regulation of p53 function. Exp Cell Res, 264:56–66.

    Article  PubMed  CAS  Google Scholar 

  • Wright PE & Dyson HJ. (1999). Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol, 293:321–31.

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Stephen CW, Luciani MG, & Fahraeus R. (2002). p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol, 4:462–7.

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Guo ZS, Marcu MG, et al., (2002). Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst, 94/504–13.

    PubMed  CAS  Google Scholar 

  • Zhao R, Gish K, Murphy M, et al., (2000). The transcriptional program following p53 activation. Cold Spring Harb Symp Quant Biol, 65:475–82.

    Article  PubMed  CAS  Google Scholar 

  • Zheleva DI, McInnes C, Gavine AL, et al., (2002). Highly potent p21(WAF1)-derived peptide inhibitors of CDK-mediated pRb phosphorylation: delineation and structural insight into their interactions with cyclin A. J Pept Res, 60:257–70.

    Article  PubMed  CAS  Google Scholar 

  • Zilfou JT, Hoffman WH, Sank M, et al., (2001). The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol Cell Biol, 21:3974–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Finlan, L.E., Hupp, T.R. (2005). The Life Cycle of P53: A Key Target in Drug Development. In: Los, M., Gibson, S.B. (eds) Apoptotic Pathways as Targets for Novel Therapies in Cancer and Other Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-387-23695-3_7

Download citation

Publish with us

Policies and ethics