Skip to main content

Caspases; Modulators of Apoptosis and Cytokine Maturation — Targets for Novel Therapies

  • Chapter
Apoptotic Pathways as Targets for Novel Therapies in Cancer and Other Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Alnemri ES, Livingston DJ, Nicholson DW, et al., (1996). Human ICE/CED-3 protease nomenclature. Cell, 87:171.

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Zubkov AY, Ross IB & Zhang JH. (2002). Therapeutic effect of caspase inhibitors in the prevention of apoptosis and reversal of chronic cerebral vasospasm. J Clin Neurosci, 9:672–7.

    Article  PubMed  CAS  Google Scholar 

  • Bajt ML, Vonderfecht SL & Jaeschke H. (2001). Differential protection with inhibitors of caspase-8 and caspase-3 in murine models of tumor necrosis factor and Fas receptor-mediated hepatocellular apoptosis. Toxicol Appl Pharmacol, 175:243–52.

    Article  PubMed  CAS  Google Scholar 

  • Benchoua A, Guegan C, Couriaud C, et al., (2001). Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci, 21:7127–34.

    PubMed  CAS  Google Scholar 

  • Bittigau P, Sifringer M, Felderhoff-Mueser U, et al., (2003). Neuropathological and biochemical features of traumatic injury in the developing brain. Neurotox Res, 5:475–90.

    Article  PubMed  Google Scholar 

  • Bonelli RM, Heuberger C & Reisecker F. (2003). Minocycline for Huntington’s disease: an open label study. Neurology, 60:883–4.

    PubMed  Google Scholar 

  • Braun JS, Novak R, Herzog KH, et al., (1999). Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat Med, 5:298–302.

    Article  PubMed  CAS  Google Scholar 

  • Brundin P, Karlsson J, Emgard M, et al., (2000). Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant, 9:179–95.

    PubMed  CAS  Google Scholar 

  • Caldwell-Kenkel JC, Currin RT, Tanaka Y, et al., (1989). Reperfusion injury to endothelial cells following cold ischemic storage of rat livers. Hepatology, 10:292–9.

    PubMed  CAS  Google Scholar 

  • Catalan MP, Esteban J, Subira D, et al., (2003). Inhibition of caspases improves bacterial clearance in experimental peritonitis. Perit Dial Int, 23:123–6.

    PubMed  CAS  Google Scholar 

  • Cauwels A, Janssen B, Waeytens A, et al., (2003). Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol, 4:387–93.

    Article  PubMed  CAS  Google Scholar 

  • Chapman JG, Magee WP, Stukenbrok HA, et al., (2002). A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin reduces myocardial ischemic injury. Eur J Pharmacol, 456:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Chen LS, Hoglen NC, Fisher CD, et al., (2003). IDN-6556, the first anti-apoptotic caspase inhibitor in clinical trials: Tissue distribution and pharmacokinetics. Hepatology, 38:580A–1A.

    Article  Google Scholar 

  • Chen M, Ona VO, Li M, et al., (2000). Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med, 6:797–801.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Deshmukh M, D’Costa A, et al., (1998). Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest, 101:1992–9.

    PubMed  CAS  Google Scholar 

  • Clark RS, Kochanek PM, Watkins SC, et al., (2000). Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem, 74:740–53.

    Article  PubMed  CAS  Google Scholar 

  • Cuconati A & White E. (2002). Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev, 16:2465–78.

    Article  PubMed  CAS  Google Scholar 

  • Daemen MA, van’t Veer C, Denecker G, et al., (1999). Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest, 104:541–9.

    PubMed  CAS  Google Scholar 

  • Denovan-Wright EM, Devarajan S, Dursun SM & Robertson HA. (2002). Maintained improvement with minocycline of a patient with advanced Huntington’s disease. J Psychopharmacol, 16:393–4.

    PubMed  CAS  Google Scholar 

  • Deveraux Q & Reed J. (1999). IAP family proteins-suppressors of apoptosis. Genes Dev, 13:239–52.

    PubMed  CAS  Google Scholar 

  • Deveraux Q, Takahashi R, Salvesen G and Reed J. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature, 388:300–4.

    Article  PubMed  CAS  Google Scholar 

  • Diguet E, Rouland R & Tison F. (2003). Minocycline is not beneficial in a phenotypic mouse model of Huntington’s disease. Ann Neurol, 54:841–2.

    Article  PubMed  Google Scholar 

  • Du Y, Ma Z, Lin S, et al., (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA, 98:14669–74.

    Article  PubMed  CAS  Google Scholar 

  • Dumont EA, Reutelingsperger CP, Smits JF, et al., (2001). Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med, 7:1352–5.

    Article  PubMed  CAS  Google Scholar 

  • Ekert PG, Read SH, Silke J, Marsden VS, Kaufmann H, Hawkins CJ, Gerl R, Kumar S & Vaux DL (2004). Apaf-1, caspase-2 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived cells die. J Cell Biol, (in press).

    Google Scholar 

  • Endres M, Namura S, Shimizu-Sasamata M, et al., (1998). Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab, 18:238–47.

    Article  PubMed  CAS  Google Scholar 

  • Ethell DW, Bossy-Wetzel E & Bredesen DE. (2001). Caspase 7 can cleave tumor necrosis factor receptor-I (p60) at a non-consensus motif, in vitro. Biochim Biophys Acta, 1541:231–8.

    Article  PubMed  CAS  Google Scholar 

  • Fauvel H, Marchetti P, Chopin C, et al., (2001). Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am J Physiol Heart Circ Physiol, 280:H1608–14.

    PubMed  CAS  Google Scholar 

  • Felderhoff-Mueser U, Sifringer M, Pesditschek S, et al., (2002). Pathways leading to apoptotic neurodegeneration following trauma to the developing rat brain. Neurobiol Dis, 11:231–45.

    Article  PubMed  CAS  Google Scholar 

  • Fink K, Zhu J, Namura S, et al., (1998). Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J Cereb Blood Flow Metab, 18:1071–6.

    Article  PubMed  CAS  Google Scholar 

  • Fink KB, Andrews LJ, Butler WE, et al., (1999). Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience, 94:1213–8.

    Article  PubMed  CAS  Google Scholar 

  • Fischer H, Koenig U, Eckhart L & Tschachler E. (2002). Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun, 293:722–6.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander RM, Gagliardini V, Hara H, et al., (1997). Expression of a dominant negative mutant of Interleukin-beta Converting Enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med, 185:933–40.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander RM, Gagliardini V, Rotello RJ & Yuan J. (1996). Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. J Exp Med, 184:717–24.

    Article  PubMed  CAS  Google Scholar 

  • Furlan R, Martino G, Galbiati F, et al., (1999). Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol, 163:2403–9.

    PubMed  CAS  Google Scholar 

  • Furuya T, Hayakawa H, Yamada M, et al., (2004). Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci, 24:1865–72.

    Article  PubMed  CAS  Google Scholar 

  • Galanos C, Freudenberg MA & Reutter W. (1979). Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA, 76:5939–43.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Calvo M, Peterson EP, Leiting B, et al., (1998). Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem, 273:32608–13.

    Article  PubMed  CAS  Google Scholar 

  • Gillardon F, Kiprianova I, Sandkuhler J, et al., (1999). Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia. Neuroscience, 93:1219–22.

    Article  PubMed  CAS  Google Scholar 

  • Gray J, Haran MM, Schneider K, et al., (2001). Evidence that inhibition of cathepsin-B contributes to the neuroprotective properties of caspase inhibitor Tyr-Val-Ala-Asp-chloromethyl ketone. J Biol Chem, 276:32750–5.

    Article  PubMed  CAS  Google Scholar 

  • Grobmyer SR, Armstrong RC, Nicholson SC, et al., (1999). Peptidomimetic fluoromethylketone rescues mice from lethal endotoxic shock. Mol Med, 5:585–94.

    PubMed  CAS  Google Scholar 

  • Hansson O, Castilho RF, Kaminski Schierle GS, et al., (2000). Additive effects of caspase inhibitor and lazaroid on the survival of transplanted rat and human embryonic dopamine neurons. Exp Neurol, 164:102–11.

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Fink K, Endres M, et al., (1997). Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cerebral Blood Flow & Metabolism, 17:370–5.

    Article  CAS  Google Scholar 

  • Haraguchi M, Torii S, Matsuzawa S, et al., (2000). Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med, 191:1709–20.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Troadec JD, Hunot S, et al. (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci, 21:2247–55.

    PubMed  CAS  Google Scholar 

  • Hawkins CJ, Yoo SJ, Petersen EP, et al., (2000). The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem., 275:27084–93.

    PubMed  CAS  Google Scholar 

  • Hersch S, Fink K, Vonsattel JP & Friedlander RM. (2003). Minocycline is protective in a mouse model of Huntington’s disease. Ann Neurol, 54:841.

    Article  PubMed  Google Scholar 

  • Himi T, Ishizaki Y & Murota S. (1998). A caspase inhibitor blocks ischaemia-induced delayed neuronal death in the gerbil. Eur J Neurosci, 10:777–81.

    Article  PubMed  CAS  Google Scholar 

  • Hoglen NC, Chen LS, Fisher CD, et al., (2004). Characterization of IDN-6556: a liver-targeted caspase inhibitor. J Pharmacol Exp Ther, 309:634–40.

    Article  PubMed  CAS  Google Scholar 

  • Hoglen NC, Fisher CD, Hirakawa BP, et al., (2003). IDN-6556, the first anti-apoptotic caspase inhibitor: Preclinical efficacy and safety. Hepatology, 38:579.

    Article  Google Scholar 

  • Hoglen NC, Hirakawa BP, Fisher CD, et al., (2001). Characterization of the caspase inhibitor IDN-1965 in a model of apoptosis-associated liver injury. J Pharmacol Exp Ther, 297:811–8.

    PubMed  CAS  Google Scholar 

  • Holly TA, Drincic A, Byun Y, et al., (1999). Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol, 31:1709–15.

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss RS, Chang KC, Swanson PE, et al., (2000). Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol, 1:496–501.

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss RS, Tinsley KW, Swanson PE, et al., (1999). Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA, 96:14541–6.

    Article  PubMed  CAS  Google Scholar 

  • Huang JQ, Radinovic S, Rezaiefar P & Black SC. (2000). In vivo myocardial infarct size reduction by a caspase inhibitor administered after the onset of ischemia. Eur J Pharmacol, 402:139–42.

    Article  PubMed  CAS  Google Scholar 

  • Igney FH & Krammer PH. (2002). Death and anti-death: tumour resistance to apoptosis. Nature Rev Cancer, 2:277–88.

    Article  CAS  Google Scholar 

  • Ikeda T, Yanaga K, Kishikawa K, et al., (1992). Ischemic injury in liver transplantation: difference in injury sites between warm and cold ischemia in rats. Hepatology, 16:454–61.

    PubMed  CAS  Google Scholar 

  • Iwata A, Harlan JM, Vedder NB & Winn RK. (2002). The caspase inhibitor z-VAD is more effective than CD18 adhesion blockade in reducing muscle ischemia-reperfusion injury: implication for clinical trials. Blood, 100:2077–80.

    Article  PubMed  CAS  Google Scholar 

  • Iwata A, Nishio K, Winn RK, et al., (2003). A broad-spectrum caspase inhibitor attenuates allergic airway inflammation in murine asthma model. J Immunol, 170:3386–91.

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Farhood A, Cai SX, et al., (2000). Protection against TNF-induced liver parenchymal cell apoptosis during endotoxemia by a novel caspase inhibitor in mice. Toxicol Appl Pharmacol, 169:77–83.

    Article  PubMed  CAS  Google Scholar 

  • Klein NC & Cunha BA. (1995). Tetracyclines. Med Clin North Am, 79:789–801.

    PubMed  CAS  Google Scholar 

  • Klevenyi P, Andreassen O, Ferrante RJ, et al., (1999). Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport, 10:635–8.

    PubMed  CAS  Google Scholar 

  • Koenig U, Eckhart L & Tschachler E. (2001). Evidence that caspase-13 is not a human but a bovine gene. Biochem Biophys Res Commun, 285:1150–4.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs P, Bak I, Szendrei L, et al., (2001). Non-specific caspase inhibition reduces infarct size and improves post-ischaemic recovery in isolated ischaemic/reperfused rat hearts. Naunyn Schmiedebergs Arch Pharmacol, 364:501–7.

    Article  PubMed  CAS  Google Scholar 

  • Kriz J, Nguyen MD & Julien JP. (2002). Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis, 10:268–78.

    Article  PubMed  CAS  Google Scholar 

  • Ku G, Faust T, Lauffer LL, et al., (1996). Interleukin-1 beta converting enzyme inhibition blocks progression of type II collagen-induced arthritis in mice. Cytokine, 8:377–86.

    Article  PubMed  CAS  Google Scholar 

  • Ku G, Ford P, Raybuck SA, et al., (2002). Selective interleukin-IB-converting enzyme (ICE/CASPASE-1) inhibition with Pralnacasan (HMR 3480/VX-740) reduces inflammation and joint destruction in murine type II collegenase-induced arthritis. Arthritis Rheum, 44:S241.

    Google Scholar 

  • Kugler S, Straten G, Kreppel F, et al., (2000). The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ, 7:815–24.

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Lippke JA, Ku G, et al., (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science, 267:2000–3.

    PubMed  CAS  Google Scholar 

  • Kunstle G, Leist M, Uhlig S, et al., (1997). Ice-protease inhibitors block murine liver injury and apoptosis caused by cd95 or by tnf-alpha. Immunology Letters, 55:5–10.

    Article  PubMed  CAS  Google Scholar 

  • Kuwano K, Kunitake R, Maeyama T, et al., (2001). Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol, 280:L316–25.

    PubMed  CAS  Google Scholar 

  • Lee D, Long SA, Adams JL, et al., (2000). Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J Biol Chem, 275:16007–14.

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Yune TY, Kim SJ, et al., (2003). Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma, 20:1017–27.

    Article  PubMed  Google Scholar 

  • Leist M, Gantner F, Bohlinger I, et al., (1995). Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol, 146:1220–34.

    PubMed  CAS  Google Scholar 

  • Lemaire C, Andreau K, Souvannavong V & Adam A. (1998). Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett, 425:266–70.

    Article  PubMed  CAS  Google Scholar 

  • Lemasters JJ, Bunzendahl H & Thurman RG. (1995). Reperfusion injury to donor livers stored for transplantation. Liver Transpl Surg, 1:124–38.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Colbourne F, Sun P, et al., (2000a). Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke, 31:176–82.

    PubMed  CAS  Google Scholar 

  • Li M, Ona VO, Guegan C, et al., (2000b). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science, 288:335–9.

    Article  PubMed  CAS  Google Scholar 

  • Li P, Allen H, Banerjee S, et al., (1995). Mice deficient in IL-1-beta-converting enzyme are defective in production of mature IL-1-beta and resistant to endotoxic shock. Cell, 80:401–11.

    Article  PubMed  CAS  Google Scholar 

  • Livingston DJ. (1997). In vitro and in vivo studies of ICE inhibitors. J Cell Biochem, 64:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Loddick SA, MacKenzie A & Rothwell NJ. (1996). An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuroreport, 7:1465–8.

    PubMed  CAS  Google Scholar 

  • Loher F, Bauer C, Landauer N, et al., (2004). The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. J Pharmacol Exp Ther, 308:583–90.

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Endres M & Moskowitz MA. (1998). Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br J Pharmacol, 124:756–62.

    Article  PubMed  CAS  Google Scholar 

  • Maier JK, Lahoua Z, Gendron NH, et al., (2002). The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J Neurosci, 22:2035–43.

    PubMed  CAS  Google Scholar 

  • Margolin N, Raybuck SA, Wilson KP, et al., (1997). Substrate and inhibitor specificity of interleukin-1 beta-converting enzyme and related caspases. J Biol Chem, 272:7223–8.

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Burns K & Tschopp J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 10:417–26.

    Article  PubMed  CAS  Google Scholar 

  • Mathiak G, Grass G, Herzmann T, et al., (2000). Caspase-1-inhibitor ac-YV AD-cmk reduces LPS-lethality in rats without affecting haematology or cytokine responses. Br J Pharmacol, 131:383–6.

    Article  PubMed  CAS  Google Scholar 

  • Mauriz JL, Gonzalez P, Jorquera F, et al., (2003). Caspase inhibition does not protect against liver damage in hemorrhagic shock. Shock, 19:33–7.

    Article  PubMed  CAS  Google Scholar 

  • Mazur PC, Karanewsky D, Armstrong RC, et al., (1998). Caspase inhibitors provide permanent protection against fas-mediated hepatocellular injury in vivo. Gastroenterology, 114:A1298–A9.

    Google Scholar 

  • McKinnon SJ, Lehman DM, Tahzib NG, et al., (2002). Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther, 5:780–7.

    Article  PubMed  CAS  Google Scholar 

  • Melnikov VY, Ecder T, Fantuzzi G, et al., (2001). Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest, 107:1145–52.

    Article  PubMed  CAS  Google Scholar 

  • Melnikov VY, Faubel S, Siegmund B, et al., (2002). Neutrophil-independent mechanisms of caspase-1-and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest, 110:1083–91.

    Article  PubMed  CAS  Google Scholar 

  • Methot N, Huang J, Coulombe N, et al., (2004). Differential Efficacy of Caspase Inhibitors on Apoptosis Markers during Sepsis in Rats and Implication for Fractional Inhibition Requirements for Therapeutics. J Exp Med, 199:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Mignon A, Rouquet N, Fabre M, et al., (1999). LPS challenge in D-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis, not for septic shock. Am J Respir Crit Care Med, 159:1308–15.

    PubMed  CAS  Google Scholar 

  • Mochizuki H, Hayakawa H, Migita M, et al., (2001). An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson’s disease. Proc Natl Acad Sci USA, 98:10918–23.

    Article  PubMed  CAS  Google Scholar 

  • Natori S, Selzner M, Valentino KL, et al., (1999). Apoptosis of sinusoidal endothelial cells occurs during liver preservation injury by a caspase-dependent mechanism. Transplantation, 68:89–96.

    Article  PubMed  CAS  Google Scholar 

  • Neviere R, Fauvel H, Chopin C et al., (2001). Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med, 163:218–25.

    PubMed  CAS  Google Scholar 

  • Norman J, Yang J, Fink G, et al., (1997). Severity and mortality of experimental pancreatitis are dependent on interleukin-1 converting enzyme (ICE). J Interferon Cytokine Res, 17:113–8.

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al., (1993). Lethal effect of the anti-Fas antibody in mice. Nature, 364:806–9.

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, Miura T, Takemura G, et al., (2000). Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia-reperfused rat heart. Cardiovasc Res, 45:642–50.

    Article  PubMed  CAS  Google Scholar 

  • Ona V, Li M, Vonsattel J, et al., (1999). Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature, 399:263–7.

    Article  PubMed  CAS  Google Scholar 

  • Onteniente B, Couriaud C, Braudeau J, et al., (2003). The mechanisms of cell death in focal cerebral ischemia highlight neuroprotective perspectives by anti-caspase therapy. Biochem Pharmacol, 66:1643–9.

    Article  PubMed  CAS  Google Scholar 

  • Ortiz A, Justo P, Sanz A, et al., (2003). Targeting apoptosis in acute tubular injury. Biochem Pharmacol, 66:1589–94.

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski AS, Rau B, Mayer JM, et al., (2002). Therapeutic application of caspase 1/interleukin-1 beta-converting enzyme inhibitor decreases the death rate in severe acute experimental pancreatitis. Ann Surg, 235:68–76.

    Article  PubMed  Google Scholar 

  • Rabuffetti M, Sciorati C, Tarozzo G, et al., (2000). Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci, 20:4398–404.

    PubMed  CAS  Google Scholar 

  • Rau B, Paszkowski A, Lillich S, et al., (2001). Differential effects of caspase-1/interleukin-1 beta-converting enzyme on acinar cell necrosis and apoptosis in severe acute experimental pancreatitis. Lab Invest, 81:1001–13.

    PubMed  CAS  Google Scholar 

  • Reed JC. (2002). Apoptosis-based therapies. Nat Rev Drug Discov, 1:111–21.

    Article  PubMed  CAS  Google Scholar 

  • Robertson GS, Crocker SJ, Nicholson DW & Schulz JB. (2000). Neuroprotection by the inhibition of apoptosis. Brain Pathol, 10:283–92.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez I, Matsuura K, Ody C, et al., (1996). Systemic injection of a tripeptide inhibits the intracellular activation of cpp32-like proteases in vivo and fully protects mice against fas-mediated fulminant liver destruction and death. J Exp Med, 184:2067–72.

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser LJ. (1998). Biologic activities of IL-1 and its role in human disease. J Allergy Clin Immunol, 102:344–50.

    Article  PubMed  CAS  Google Scholar 

  • Rouquet N, Pages JC, Molina T, et al., (1996). ICE inhibitor YVAD-cmk is a potent therapeutic agent against in vivo liver apoptosis. Current Biol, 6:1192–5.

    Article  CAS  Google Scholar 

  • Rudiger HA & Clavien PA. (2002). Tumor necrosis factor alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver. Gastroenterology, 122:202–10.

    Article  PubMed  CAS  Google Scholar 

  • Rudolphi K, Gerwin N, Verzijl N, et al. (2003) Pralnacasan, an inhibitor of interleukin-1 beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage, 11:738–46.

    Article  PubMed  CAS  Google Scholar 

  • Saegusa K, Ishimaru N, Yanagi K, et al., (2002). Prevention and induction of autoimmune exocrinopathy is dependent on pathogenic autoantigen cleavage in murine Sjogren’s syndrome. J Immunol, 169:1050–7.

    PubMed  CAS  Google Scholar 

  • Sakurada K, Kitanaka C, Kokubu A, et al., (2002). A Cellular Mechanism That Reversibly Inactivates Pancaspase Inhibitor zAsp-CH(2)-DCB: A Potential Pitfall Causing Discrepancy between in Vitro and in Vivo Caspase Assays. Biochem Biophys Res Commun, 291:1022–30.

    Article  PubMed  CAS  Google Scholar 

  • Salvesen GS & Dixit VM. (1999). Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA, 96:10964–7.

    Article  PubMed  CAS  Google Scholar 

  • Samad TA, Moore KA, Sapirstein A, et al., (2001). Interleukin-1 beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 410:471–5.

    Article  PubMed  CAS  Google Scholar 

  • Schierle GS, Hansson O, Leist M, et al., (1999). Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nat Med, 5:97–100.

    Article  PubMed  CAS  Google Scholar 

  • Schotte P, Declercq W, Van Huffel S, V et al., (1999). Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett, 442:117–21.

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Weller M, Matthews RT, et al., (1998). Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death Differ, 5:847–57.

    Article  PubMed  CAS  Google Scholar 

  • Schwerk C & Schulze-Osthoff K. (2003). Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem Pharmacol, 66:1453–8.

    Article  PubMed  CAS  Google Scholar 

  • Scott CW, Sobotka-Briner C, Wilkins DE, et al., (2003). Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis. J Pharmacol Exp Ther, 304:433–40.

    Article  PubMed  CAS  Google Scholar 

  • Seery JP, Cattell V & Watt FM. (2001). Amelioration of kidney disease in a transgenic mouse model of lupus nephritis by administration of the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-(beta-o-methyl)-fluoromethylketone. J Immunol, 167:2452–5.

    PubMed  CAS  Google Scholar 

  • Siegmund B & Zeitz M. (2003). Pralnacasan (vertex pharmaceuticals). I Drugs, 6:154–8.

    PubMed  CAS  Google Scholar 

  • Smith DL, Woodman B, Mahal A, et al., (2003). Minocycline and doxycycline are not beneficial in a model of Huntington’s disease. Ann Neurol, 54:186–96.

    Article  PubMed  CAS  Google Scholar 

  • Stone M, Fortin PR, Pacheco-Tena C & Inman RD. (2003). Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. J Rheumatol, 30:2112–22.

    PubMed  CAS  Google Scholar 

  • Sugawara I. (2000). Interleukin-18 (IL-18) and infectious diseases, with special emphasis on diseases induced by intracellular pathogens. Microbes Infect, 2:1257–63.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A. (1998). The dominant role of CPP32 subfamily in fas-mediated hepatitis. Proc Soc Exp Biol Med, 217:450–4.

    PubMed  CAS  Google Scholar 

  • Talanian RV, Quinlan C, Trautz S, et al., (1997). Substrate specificities of caspase family proteases. J Biol Chem, 272:9677–82.

    Article  PubMed  CAS  Google Scholar 

  • Taraseviciene-Stewart L, Gera L, Hirth P, et al., (2002). A bradykinin antagonist and a caspase inhibitor prevent severe pulmonary hypertension in a rat model. Can J Physiol Pharmacol, 80:269–74.

    Article  PubMed  CAS  Google Scholar 

  • Thomas M & Le WD. (2004). Minocycline: neuroprotective mechanisms in Parkinson’s disease. Curr Pharm Des, 10:679–86.

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Le WD & Jankovic J. (2003). Minocycline and other tetracycline derivatives: a neuroprotective strategy in Parkinson’s disease and Huntington’s disease. Clin Neuropharmacol, 26:18–23.

    Article  PubMed  Google Scholar 

  • Thornberry N, Rano T, Peterson E, et al., (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem, 272:17907–11.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Bull HG, Calaycay JR, et al., (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356:768–74.

    Article  PubMed  CAS  Google Scholar 

  • Troy CM & Shelanski ML. (2003). Caspase-2 redux. Cell Death Differ, 10:101–7.

    Article  PubMed  CAS  Google Scholar 

  • Troy CM Stefanis L, Prochiantz A, et al., (1996). The contrasting roles of ice family proteases and interleukin-1-beta in apoptosis induced by trophic factor withdrawal and by copper/zinc superoxide dismutase down-regulation. Proc Natl Acad Sci USA, 93:5635–40.

    Article  PubMed  CAS  Google Scholar 

  • Valentino KL, Gutierrez M, Sanchez R, et al., (2003). First clinical trial of a novel caspase inhibitor: antiapoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther, 41:441–9.

    PubMed  CAS  Google Scholar 

  • Van de Craen M, Declercq W, Van den Brande et al., (1999). The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ, 6:1117–24.

    Article  PubMed  CAS  Google Scholar 

  • Van de Craen M, Vandenabeele P, Declercq W, et al., (1997). Characterization of seven murine caspase family members. FEBS Lett, 403:61–9.

    Article  PubMed  Google Scholar 

  • Van Den Bosch L, Tilkin P, Lemmens G & Robberecht W. (2002). Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport, 13:1067–70.

    Article  Google Scholar 

  • Vaux DL, Aguila HL & Weissman IL. (1992). Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing. Int Immunol, 4:821–4.

    PubMed  CAS  Google Scholar 

  • von Coelln R, Kugler S, Bahr M, et al., (2001). Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J Neurochem, 77:263–73.

    Article  Google Scholar 

  • Walsh CM, Luhrs KA & Arechiga AF. (2003). The “fuzzy logic” of the death-inducing signaling complex in lymphocytes. J Clin Immunol, 23:333–53.

    Article  PubMed  CAS  Google Scholar 

  • Wang TD, Chen WJ, Mau TJ, et al., (2003a). Attenuation of increased myocardial ischaemia-reperfusion injury conferred by hypercholesterolaemia through pharmacological inhibition of the caspase-1 cascade. Br J Pharmacol, 138:291–300.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu S, Drozda M, et al., (2003b). Minocycline inhibits caspase-independent and-dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA, 100:10483–7.

    Article  PubMed  CAS  Google Scholar 

  • Wu JC & Fritz LC. (1999). Irreversible caspase inhibitors: tools for studying apoptosis. Methods, 17:320–8.

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Bureau Y, McIntyre DC, et al., (1999). Attenuation of ischemia-induced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus. J Neurosci, 19:5026–33.

    PubMed  CAS  Google Scholar 

  • Xu DG, Crocker SJ, Doucet JP, et al., (1997). Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med, 3:997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev AG, Knoblach SM, Fan L, et al., (1997). Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci, 17:7415–24.

    PubMed  CAS  Google Scholar 

  • Yang L, Sugama S, Chirichigno JW, et al., (2003a). Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res, 74:278–85.

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Guastella J, Huang JC, et al., (2003b). MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity. Br J Pharmacol, 140:402–12.

    Article  PubMed  CAS  Google Scholar 

  • Yao JH, Ye SM, Burgess W, et al., (1999). Mice deficient in interleukin-1 beta converting enzyme resist anorexia induced by central lipopolysaccharide. Am J Physiol, 277:R1435–43.

    PubMed  CAS  Google Scholar 

  • Yaoita H, Ogawa K, Maehara K & Maruyama Y. (1998). Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation, 97:276–81.

    PubMed  CAS  Google Scholar 

  • Zhang W, Narayanan M & Friedlander RM. (2003). Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol, 53:267–70.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Center DM, Wu DM, et al., (1998). Processing and activation of pro-interleukin-16 by caspase-3. J Biol Chem, 273:1144–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Stavrovskaya IG, Drozda M, et al., (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 417:74–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Knight, M.J., Hawkins, C.J. (2005). Caspases; Modulators of Apoptosis and Cytokine Maturation — Targets for Novel Therapies. In: Los, M., Gibson, S.B. (eds) Apoptotic Pathways as Targets for Novel Therapies in Cancer and Other Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-387-23695-3_4

Download citation

Publish with us

Policies and ethics