Skip to main content

Neuroendocrine Outcomes of Sleep Deprivation in Humans and Animals

  • Chapter
Neuroendocrine Correlates of Sleep/Wakefulness
  • 3059 Accesses

Abstract

Hormones can modulate and be modulated by sleep. This close relationship has been recognised for many decades. Sleep deprivation is an adverse condition that can alter the functioning of the neuroendocrine system, inasmuch as concentrations of hormones involved in anabolic processes, such as growth hormone (GH) are reduced, whilst levels of hormones involved in anabolic processes, such as glucocorticoids (GC) are increased. Therefore, prolonged periods of sleep deprivation, either internally or externally imposed, may lead to a wear and tear phenomenon, much similar to prolonged stressful conditions. In human beings, the vicious circle composed by sleep deprivation, stress and obesity has been claimed to be a major contributor to type II diabetes, cardiovascular diseases and ultimately, death

Abbreviations used in this chapter: ACTH: adrenocorticotropic hormone; ADR: adrenaline; Arc. N.: arcuate nucleus; AVP: arginin vasopressin; CRH: corticotropin-releasing factor; CSF: cerebrospinal fluid; GC: glucocorticoid; GH: growth hormone; GHRH: GH-releasing hormone; HPA: hypothalamus-pituitary-adrenal; LHA: lateral hypothalamic area; MMPM: modified multiple platform method; mRNA: messenger RNA; OT: oxytocin; PVN: paraventricular nucleus; REM: rapid eye movements; TSH: thyrotropin-stimulating hormone

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Cauter E, Plat L, Copinschi G. Interrelations between sep and the somatotropic axis. Sleep 1998; 21:553–566.

    PubMed  Google Scholar 

  2. Born J, Fehm HL. The neuroendocrine recovery function of sleep. Noise Health 2000; 7:25–37.

    Google Scholar 

  3. Steiger A. Sleep and endocrinology. J Intern Med 2003; 254:13–22.

    PubMed  CAS  Google Scholar 

  4. Van Cauter E, Turek FW. Roles of sleep-wake and dark-light cycles in the control of endocrine, metabolic, cardiovascular, and cognitive functions. In: McEwen BS, ed. Coping with the environment: neural and endocrine mechanisms. Handbook of Physiology, section 7, vol. IV. Oxford: Oxford University Press, 2001, 313–330.

    Google Scholar 

  5. Ceizler CA. Quantifying consequences of chronic sleep restriction. Sleep 2003; 26:247–248.

    Google Scholar 

  6. Van Dongen HP, Maislin G, Mullington JM, et al. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003; 26:117–126.

    PubMed  Google Scholar 

  7. Spiegel K, Leproult R, van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354:1435–1439.

    PubMed  CAS  Google Scholar 

  8. Dement W. The effect of dream deprivation. Science 1960; 131:1705–1707.

    PubMed  CAS  Google Scholar 

  9. Morden B, Mitchell G, Dement W. Selective REM sleep deprivation and compensation phenomena in the rat. Brain Res 1967; 5:339–349.

    PubMed  CAS  Google Scholar 

  10. Mendelson W, Guthrie RD, Frederick G, et al. The flower pot technique of rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav 1974; 2:553–556.

    PubMed  CAS  Google Scholar 

  11. Endo T, Roth C, Landolt HP, et al. Selective REM sleep deprivation in humans: effects on sleep and sleep EEG. Am J Physiol 1998; 274:R1186–1194.

    PubMed  CAS  Google Scholar 

  12. Ferrara M, De Gennaro L, Bertini M. Selective slow-wave sleep (SWS) deprivation and SWS rebound: do we need a fixed SWS amount per night? Sleep Res Online 1999; 2:15–19.

    PubMed  CAS  Google Scholar 

  13. Suchecki D, Palma BD, Tufik S. Sleep rebound in animals deprived of paradoxical sleep by the multiple platform method. Brain Res 2000; 875:14–22.

    PubMed  CAS  Google Scholar 

  14. Werth E, Cote KA, Gallmann E, et al. Selective REM sleep deprivation during daytime I. Time course of interventions and recovery sleep. Am J Physiol 2002; 283:R521–R526.

    CAS  Google Scholar 

  15. Machado RB, Hipólide DC, Benedito-Silva AA, et al. Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 2004; 1004:45–51.

    PubMed  CAS  Google Scholar 

  16. Sleep Syllabus. http://www.sleephomepages.org/sleepsyllabus/sleephome.html 1995

  17. Salin-Pascual RJ, Jimenez-Anguiano A, Granados-Fuentes D, et al. Effects of biperiden on sleep at baseline and after 72 h of REM sleep deprivation in the cat. Psychopharmacology 1992; 106:540–542.

    PubMed  CAS  Google Scholar 

  18. Mavanji V, Datta S. Sleep-wake effects of yohimbine and atropine in rats with a clomipramine-based model of depression. Neuroreport 2002; 13(13):1603–1606.

    PubMed  CAS  Google Scholar 

  19. Kovalzon VM, Tsibulsky VL. REM-sleep deprivation, stress and emotional behavior in rats. Behav Brain Res 1984; 14:235–245.

    PubMed  CAS  Google Scholar 

  20. Pacheco-Cano MT, García-Hernández F, Prospéro-Garcia O, et al. Vasoactive intestinal polypeptide induces REM recovery in insomniac forebrain lesioned cats. Sleep 1990; 13:297–303.

    PubMed  CAS  Google Scholar 

  21. Singh S, Mallick BN. Mild electrical stimulation of pontine tegmentum around locus coeruleus reduces rapid eye movement sleep in rats. Neurosci Res 1996; 24:227–235.

    PubMed  CAS  Google Scholar 

  22. Jouvet D, Vilmont P, Delorme F, et al. Etude de la privation sélective de la phase paradoxale de sommeil chez le chat. Compt Rend Soc Biol 1964; 158:756–759.

    CAS  Google Scholar 

  23. Cohen HB, Dement WC. Sleep: changes in threshold to electroconvulsive shock in rats after deprivation of “paradoxical” phase. Science 1965; 150:1318–1319.

    PubMed  CAS  Google Scholar 

  24. Landis C. Altered sleep patterns with the platform method of REM sleep deprivation in rats Sleep Res 1996; 25:469.

    Google Scholar 

  25. Coenen AML, van Luijtelaar ELJM. Stress induced by three procedures of deprivation of paradoxical sleep. Physiol Behav 1985; 35:501–504.

    PubMed  CAS  Google Scholar 

  26. Suchecki D, Tufik S. Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiol Behav 2000; 68:309–316.

    PubMed  CAS  Google Scholar 

  27. Rechtschaffen A, Gilliland MA, Bergmann BM, et al. Physiological correlates of prolonged sleep deprivation in rats. Science 1983; 221:182–184.

    PubMed  CAS  Google Scholar 

  28. Hoshino K. Food deprivation and hypothermia in desynchronized sleep-deprived rats. Braz J Med Biol Res 1996; 29:41–46.

    PubMed  CAS  Google Scholar 

  29. Salin-Pascual RJ, Franco M, Garcia-Ferreiro R, et al. Differences in sleep variables, blood adenosine, and body temperature between hypothyroid and euthyroid rats before and after REM sleep deprivation. Sleep 1997; 20:957–962.

    PubMed  CAS  Google Scholar 

  30. Seabra MLV, Tufik S. Sodium diclofenac inhibits hyperthermia induced by paradoxical sleep deprivation: the possible participation of prostaglandins. Physiol Behav 1993; 54:923–926.

    CAS  Google Scholar 

  31. Landis CA, Bergmann BM, Ismail MM, et al. Sleep deprivation in the rat: XV. Ambient temperature choice in paradoxical sleep-deprived rats, Sleep 1992; 15:13–20.

    PubMed  CAS  Google Scholar 

  32. Prete FR, Bergmann BM, Holtzman P, et al. Sleep deprivation in the rat: XII. Effect on ambient temperature choice. Sleep 1991; 14:109–115.

    PubMed  CAS  Google Scholar 

  33. Gomez-Merino D, Chennaoui M, Drogou C, et al. Decrease in serum leptin after prolonged physical activity in men. Med Sci Sports Exerc 2002; 34(10):1594–1599.

    PubMed  CAS  Google Scholar 

  34. Young AJ, Castellani JW, O’Brien C, et al. Exertional fatigue, sleep loss, and negative energy balance increase susceptibility to hypothermia. J Appl Physiol 1998; 85(4):1210–1217.

    PubMed  CAS  Google Scholar 

  35. Mullington JM, Chan JL, Van Dongen HP, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol 2003; 15(9):851–854.

    PubMed  CAS  Google Scholar 

  36. Bonnet MH, Arand DL. Insomnia, metabolic rate and sleep restoration. J Intern Med 2003; 254:23–31.

    PubMed  CAS  Google Scholar 

  37. Ryan CF, Love LL, Buckley PA. Energy expenditure in obstructive sleep apnea. Sleep 1995; 18:180–187.

    PubMed  CAS  Google Scholar 

  38. Stenlof K, Grunstein R, Hedner J, et al. Energy expenditure in obstructive sleep apnea: effects of treatment with continuous positive airway pressure. Am J Physiol 1996; 271:E1036–E1043.

    PubMed  CAS  Google Scholar 

  39. Ozturk L, Unal M, Tamer L, et al. The association of the severity of obstructive sleep apnea with plasma leptin levels. Arch Otolaryngol Head Neck Surg 2003; 129(5):538–540.

    PubMed  Google Scholar 

  40. Allan J, Czeisler C. Persistence of the circadian thyrotropin rhythm under constant conditions and after light-induced shifts of circadian phase. J Clin Endocrinol Metab 1994; 79:508–512.

    PubMed  CAS  Google Scholar 

  41. Leproult R, Van Reeth O, Byrne MM, et al. Sleepiness, performance, and neuroendocrine function during sleep deprivation: effects of exposure to bright light or exercise. J Biol Rhythms 1997; 23:245–258.

    Google Scholar 

  42. Elomaa E. The cuff pedestal: an alternative to flowerpots? Physiol Behav 1979; 23:669–672.

    PubMed  CAS  Google Scholar 

  43. Kushida CA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 1989, 12:22–30.

    PubMed  CAS  Google Scholar 

  44. Brock JW, Farooqui SM, Ross KD, et al. Stress-related behavior and central norepinephrine concentrations in the REM sleep-deprived rat. Physiol Behav 1994; 55:997–1003.

    PubMed  CAS  Google Scholar 

  45. Suchecki D, Antunes J, Tufik S. Palatable solutions during paradoxical sleep deprivation: reduction of hypothalamic-pituitary-adrenal axis activity and lack of effect on energy imbalance. J Neuroendocrinol 2003; 15:815–821.

    PubMed  CAS  Google Scholar 

  46. Andersen ML, Martins PJF, D’Almeida V, et al. Effects of paradoxical sleep deprivation on blood parameters associated with cardiovascular risk in aged rats. Exp. Gerontol., in press.

    Google Scholar 

  47. Everson C, Bergmann BM, Rechtshaffen A. Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 1989; 12:12–21.

    Google Scholar 

  48. Everson CA. Functional consequences of sustained sleep deprivation in the rat. Behav Brain Res 1995; 69:43–54

    PubMed  CAS  Google Scholar 

  49. Everson CA, Wehr TA. Nutritional and metabolic adaptations to prolonged sleep deprivation in the rat. Am J Physiol 1993; 264:R376–R387.

    PubMed  CAS  Google Scholar 

  50. Everson CA, Crowley WR. Reductions in circulating anabolic hormones induced by sustained sleep deprivation in rats. Am J Physiol Endocrinol Metab, in press.

    Google Scholar 

  51. Borbely AA. Sleep in the rat during food deprivation and subsequent restitution of food. Brain Res 1997; 124:457–461.

    Google Scholar 

  52. Willie JT, Chemelli RM, Sinton CM, et al. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Ann Rev Neurosci 2001; 24:429–458.

    PubMed  CAS  Google Scholar 

  53. Wu MF, John J, Maidment N, et al. Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am J Physiol 2002; 283:R1079–R1086.

    Google Scholar 

  54. Pedrazzoli M, D’Almeida V, Martins PJ, et al. Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep deprivation. Brain Res. 2004; 995:1–6.

    PubMed  CAS  Google Scholar 

  55. Torterolo P, Yamuy J, Sampogna S, et al. Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep 2003; 26:25–28.

    PubMed  Google Scholar 

  56. Torterolo P, Yamuy J, Sampogna S, et al. Hypothalamic neurons that contain hypocretin (orexin) express c-fos during active wakefulness and carbachol-induced active sleep. Sleep Res Online 2001; 4:25–32.

    Google Scholar 

  57. Martins PJ, D’Almeida V, Pedrazzoli M, et al. Increased hypocretin-1 (orexin-a) levels in cerebrospinal fluid of rats after short-term forced activity. Regul Pept 2004; 117:155–158.

    PubMed  CAS  Google Scholar 

  58. Stratakis CA, Chrousos GP. Neuroendocrinology and pathophysiology of the stress system. Ann NY Acad Sci 1995; 771:1–18.

    PubMed  CAS  Google Scholar 

  59. Andersen ML, Bignotto M, Tufik S. Facilitation of ejaculation after metamphetamine administration in paradoxical sleep deprived rats. Brain Res 2003; 978:31–37.

    Google Scholar 

  60. Andersen ML, Bignotto M, Machado RB, et al. Effects of chronic stress on steroid hormones secretion in male rats. Braz J Med Biol Res, in press.

    Google Scholar 

  61. Andersen ML, Bignotto M, Papale LA, et al. Age-related effects on genital reflexes induced by paradoxical sleep deprivation and cocaine in rats. Exp Gerontol 2004; 39(2):233–237.

    PubMed  CAS  Google Scholar 

  62. Andersen ML, Bignotto M, Machado RB, et al. Does sleep deprivation and cocaine induce penile erection and ejaculation in old rats? Addict Biol 2002; 7:285–290.

    PubMed  CAS  Google Scholar 

  63. Andersen ML, Bignotto M, Tufik S. Hormone treatment facilitates penile erection in castrated rats after sleep deprivation and cocaine. J Neuroendocrinol 2004;16(2):154–159

    PubMed  CAS  Google Scholar 

  64. Velazquez-Moctezuma J, Monroy E, Cruz ML Facilitation of the effect testosterone on male sexual behavior in rats deprived of REM sleep. Behav Neural Biol 1989; 51:46–53.

    PubMed  CAS  Google Scholar 

  65. Sassin JF, Parker DC, Johnson LC, et al. Effects of slow wave sleep deprivation on human growth hormone release in sleep: preliminary study. Life Sci 1969; 8(23):1299–1307.

    PubMed  CAS  Google Scholar 

  66. Sassin JF, Parker DC, Mace JW, et al. Human growth hormone release: relation to slow-wave sleep and sleep-walking cycles. Science 1969; 165(892):513–515.

    PubMed  CAS  Google Scholar 

  67. Mitsugi N, Kimura F. Simultaneous determination of blood levels of corticosterone and growth hormone in the male rat: relation to sleep-wakefulness cycle. Neuroendocrinology 1985; 41(2):125–130.

    PubMed  CAS  Google Scholar 

  68. Spath-Schwalbe E, Hundenborn C, Kern W, et al. Nocturnal wakefulness inhibits growth hormone (GH)-releasing hormone-induced GH secretion. J Clin Endocrinol Metab 1995; 80:214–219.

    PubMed  CAS  Google Scholar 

  69. Barbarino A, Corsello SM, Della Casa S, et al. Corticotropin-releasing hormone inhibition of growth-hormone releasing hormone-induced growth hormone release in man. J Clin Endocrinol Metab 1990; 71:1368–1374.

    PubMed  CAS  Google Scholar 

  70. Brandenberger G, Gronfier C, Chapotot F, et al. Effect of sleep deprivation on overall 24 h growth-hormone secretion. Lancet 2000; 56:1408.

    Google Scholar 

  71. Spiegel K, Leproult R, Colecchia EF, et al. Adaptation of the 24-h growth hormone profile to a state of sleep debt Am J Physiol 2000; 279:R874–R883.

    CAS  Google Scholar 

  72. Cooper BG, White JS, Ashworth LA, et al. Hormonal and metabolic profiles in subjects with obstructive sleep apnea syndrome and the acute effects of nasal continuous positive airway pressure (CPAP) treatment. Sleep 1995; 18:172–179.

    PubMed  CAS  Google Scholar 

  73. Grunstein RR. Metabolic aspects of sleep apnea. Sleep 1996; 19:S218–S220.

    PubMed  CAS  Google Scholar 

  74. Obál F Jr, Floyd R, Kapas L, et al. Effects of systemic GHRH on sleep in intact and hypophysectomized rats. Am J Physiol. 1996; 270(2 Pt 1):E230–237.

    PubMed  Google Scholar 

  75. Gardi J, Obál Jr F, Fang J, et al. Diurnal variations and sleep deprivationinduced changes in rat hypothalamic GHRH and somatostatin contents. Am J Physiol 1999; 277(46):R1339–R1344.

    PubMed  CAS  Google Scholar 

  76. Zhang J, Chen Z, Taishi P, et al. Sleep deprivation increases rat hypothalamic growth hormone-releasing hormone mRNA. Am J Physiol 1998; 275(44):R1755–R1761.

    PubMed  CAS  Google Scholar 

  77. Toppila J, Asikainen M, Alanko L, et al. The effect of REM sleep deprivation on somatostatin and growth hormone-releasing hormone expression in the rat hypothalamus. J Sleep Res 1996; 5(2):115–122.

    PubMed  CAS  Google Scholar 

  78. Danguir J. Intracerebroventricular infusion of somatostatin selectively increases paradoxical sleep in rats. Brain Res 1986; 367(1–2):26–30.

    PubMed  CAS  Google Scholar 

  79. Danguir J. The somatostatin analogue SMS 201–995 promotes paradoxical sleep in aged rats. Neurobiol Aging 1989; 10(4):367–369.

    PubMed  CAS  Google Scholar 

  80. Toppila J, Alanko L, Asikainen M, et al. Sleep deprivation increases somatostatin and growth hormone-releasing hormone messenger RNA in the rat hypothalamus. J Sleep Res 1997; 6(3):171–178.

    PubMed  CAS  Google Scholar 

  81. Dallman MF, Akana SF, Cascio CS, Darlington DN, Jacobson L, Levin N. Regulation of ACTH secretion: Variations on a theme of B. Recent Prog Horm Res 1987; 43:113–173.

    PubMed  CAS  Google Scholar 

  82. Plotsky PM. Hypophyseotropic regulation of adenohypophyseal adrenocorticotropin secretion. Fed Proc 1985; 44:207–213.

    PubMed  CAS  Google Scholar 

  83. Antoni FA. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev 1986: 7(4):351–378.

    PubMed  CAS  Google Scholar 

  84. De Kloet ER, Reul JMHM. Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 1987; 2:83–105.

    Google Scholar 

  85. Ratka A, Sutanto W, De Kloet ER. On the role of brain mineralocorticoid (Type I) and glucocorticoid (Type II) receptors in neuroendocrine regulation. Neuroendocrinology 1989; 50:117–123.

    PubMed  CAS  Google Scholar 

  86. De Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Front Endocrinol 1991; 12:95–164.

    Google Scholar 

  87. Chang FC, Opp MR. Corticotropin-releasing hormone (CRH) as a regulator of waking. Neurosci Biobehav Rev. 2001; 25(5):445–453.

    PubMed  CAS  Google Scholar 

  88. Arborelius L, Owens MJ, Plotsky PM, et al. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999; 160:1–12.

    PubMed  CAS  Google Scholar 

  89. Stefos G, Staner L, Kerkhofs M, et al. Shortened REM latency as a psychobiological marker for psychotic depression? An age-, gender-, and polarity-controlled study. Biol Psychiatry 1998; 44(12):1314–1320.

    PubMed  CAS  Google Scholar 

  90. Shipley JE, Schteingart DE, Tandon R, et al. EEG sleep in Cushing’s disease and Cushing’s syndrome: comparison with patients with major depressive disorder. Biol Psychiatry 1992; 32(2):146–155.

    PubMed  CAS  Google Scholar 

  91. Krieg JC, Lauer CJ, Schreiber W, et al. Neuroendocrine, polysomnographic and psychometric observations in healthy subjects at high familial risk for affective disorders: the current state of the ‘Munich vulnerability study’. J Affect Disord 2001; 62(1–2):33–37.

    PubMed  CAS  Google Scholar 

  92. Dugovic C, Maccari S, Weibel L, et al. High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci 1999; 19(19):8656–8664.

    PubMed  CAS  Google Scholar 

  93. Vgontzas AN, Bixler EO, Lin HM, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab 2001; 86(8):3787–3794.

    PubMed  CAS  Google Scholar 

  94. Späth-Schwalbe E, Gofferje M, Kern W, et al. Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol Psychiatry 1991; 29(6):575–584.

    PubMed  Google Scholar 

  95. Weibel L, Follenius M, Spiegel K, et al. Comparative effect of night and daytime sleep on the 24-hour cortisol secretory profile. Sleep 1995; 18(7):549–556.

    PubMed  CAS  Google Scholar 

  96. Leproult R, Copinschi G, Buxton O, et al. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 1997; 20(10):865–870.

    PubMed  CAS  Google Scholar 

  97. Vgontzas AN, Mastorakos G, Bixler EO, et al. Sleep deprivation effects on the activity of the hypothalamic-pituitary-adrenal and growth axes: potential clinical implications. Clin Endocrinol 1999; 51(2):205–215.

    CAS  Google Scholar 

  98. Meerlo P, Koehl M, van der Borght K, et al. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol 2002; 14(5):397–402.

    PubMed  CAS  Google Scholar 

  99. Fadda P, Fratta W. Stress-induced sleep deprivation modifies corticotrophin releasing factor (CRF) levels and CRF binding in rat brain and pituitary. Pharmacol Biochem Behav 1997; 35(5):443–446.

    CAS  Google Scholar 

  100. Brock JW, Farooqui SM, Ross KD, et al. Stress-related behavior and central norepinephrine concentrations in the REM sleep-deprived rat. Physiol Behav 1994; 55:997–1003.

    PubMed  CAS  Google Scholar 

  101. Patchev V, Felszeghy K, Korányi L. Neuroendocrine and neurochemical consequences of a long-term sleep deprivation in rats: similarities to some features of depression. Homeostasis 1991; 33:97–108.

    PubMed  CAS  Google Scholar 

  102. Suchecki D, Lobo LL, Hipólide DC, et al. Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. J Sleep Res 1998; 7:276–281.

    PubMed  CAS  Google Scholar 

  103. Coenen AML, van Luijtelaar ELJM. Stress induced by three procedures of deprivation of paradoxical sleep. Physiol Behav 1985; 35:501–504.

    PubMed  CAS  Google Scholar 

  104. Dallman MF, Akana SF, Scribner KA, et al. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J Neuroendocrinol 1991; 4: 517–526.

    Google Scholar 

  105. Suchecki D, Tiba PA, Tufik S. Paradoxical sleep deprivation facilitates subsequent corticosterone response to a mild stressor in rats. Neurosci Lett 2002; 320:45–48.

    PubMed  CAS  Google Scholar 

  106. Levine S, Ursin H. What is stress? In: Brown MR, Koob GF, Rivier C, eds. Stress, Neurobiology and Neuroendocrinology. New York: Marcel Dekker, Inc., 1991, 3–21.

    Google Scholar 

  107. Plaut SM, Friedman SB. Stress, coping behavior and resistance to disease. Psychother Psychosom 1982; 38:274–283.

    PubMed  CAS  Google Scholar 

  108. Suchecki D, Tiba PA, Tufik S. Hormonal and behavioural responses of paradoxical sleep-deprived rats to the elevated plus maze. J Neuroendocr 2002; 14:549–554.

    CAS  Google Scholar 

  109. Dallman MF, Pecoraro N, Akana SF, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci 2003; 100(20): 11696–11701.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Suchecki, D., Tufik, S. (2006). Neuroendocrine Outcomes of Sleep Deprivation in Humans and Animals. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_9

Download citation

Publish with us

Policies and ethics