Skip to main content

Molecular Mechanisms of Melatonin Action: Targets in Sleep Regulation

  • Chapter
Neuroendocrine Correlates of Sleep/Wakefulness

Abstract

Melatonin, the principal hormone secreted by the pineal gland, influences the function of diverse neuroendocrine and other systems in mammals. This indoleamine hormone is also involved in maintaining brain homeostasis, entraining biological rhythms and coordinating reproductive function to changes in photoperiod in seasonal breeders.1,2 Other studies indicate a potentially important immunomodulatory role for melatonin which binds with high-affinity to T lymphocytes3 and is synthesized by human lymphocytes4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Reiter, Pineal melatonin: cell biology of its synthesis and of its physiological interactions, Endocrine Rev. 12(2), 151–180 (1991).

    Article  CAS  Google Scholar 

  2. V. Simonneaux, and C. Ribelayga, Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters, Pharmacol. Rev. 55(2), 325–395 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. M.G. Gonzalez-Haba, S. Garcia-Maurino, J.R. Calvo, R. Goberna, and J.M. Guerrero, High-affinity binding of melatonin by human circulating T lymphocytes (CD4+), FASEB J. 9(13), 1331–1335 (1995).

    PubMed  CAS  Google Scholar 

  4. Carrillo-Vico, J.R. Calvo, P. Abreu, P.J. Lardone, S. Garcia-Maurino, R.J. Reiter, and J.M. Guerrero, Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance, FASEB J. 18(3), 537–539 (2004).

    PubMed  CAS  Google Scholar 

  5. R. Hardeland, R.J. Reiter, B. Poeggeler, and, D.X. Tan, The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances, Neurosci. Biobehav. Rev. 17(3), 347–357 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. R.J. Reiter, and D.X. Tan, Melatonin: a novel protective agent against oxidative injury of the Ischemic/reperfused heart, Cardiovasc. Res. 58(1), 10–19 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. C.V. Borlongan, M. Yamamoto, N. Takei, M. Kumazaki, C. Ungsuparkorn, H. Hida, P.R. Sanberg, and H. Nishino, Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia, FASEB J. 14(10), 1307–1317 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. H. Khaldy, G. Escames, J. Leon, L. Bikjdaouene, and D. Acuna-Castroviejo, Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion, Neurobiol. Aging. 24(3), 491–500 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. C.C. Tenn, and L.P. Niles, Central-type benzodiazepine receptors mediate the anti-dopaminergic effect of clonazepam and melatonin in 6-hydroxydopamine lesioned rats: involvement of a GABAergic mechanism, J. Pharmacol. Exp. Ther. 274(1), 84–89 (1995).

    PubMed  CAS  Google Scholar 

  10. K.J. Armstrong, and L.P. Niles, Induction of GDNF mRNA expression by melatonin in rat C6 glioma cells, NeuroReport. 13(4), 473–475 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. C.J. Van Den Heuvel, D.J. Kennaway, and D. Dawson, Effects of daytime melatonin infusion in young adults, Am. J. Physiol. 275(1 Pt 1), E19–E26 (1998).

    Google Scholar 

  12. I.V. Zhdanova, R.J. Wurtman, C. Morabito, V.R. Piotrovska, and H.J. Lynch, Effects of low oral doses of melatonin, given 2–4 hours before habitual bedtime, on sleep in normal young humans, Sleep. 19(5), 423–431 (1996).

    PubMed  CAS  Google Scholar 

  13. L.P. Niles, 1997, in: G Protein Methods and Protocols: Role of G proteins in Psychiatric and Neurological Disorders, edited by R.K. Mishra, G.B. Baker and A.A. Boulton (Humana Press, New Jersey, 1997), pp. 223–281.

    Google Scholar 

  14. J. Vanecek, Cellular mechanisms of melatonin action, Physiol. Rev. 78(3), 687–721 (1998).

    PubMed  CAS  Google Scholar 

  15. M.U. Gillette, and J.W., Mitchell, Signaling in the suprachiasmatic nucleus: selectively responsive and integrative, Cell Tissue Res. 309(1), 99–107 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. M.J. Gerdin, M.I. Masana, D. Ren, R.J. Miller, and M.L. Dubocovich, Shortterm exposure to melatonin differentially affects the functional sensitivity and trafficking of the hMT1 and hMT2 melatonin receptors, J. Pharmacol. Exp. Ther. 304(3), 931–939 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. M.I. Masana, P.A. Witt-Enderby, and M.L. Dubocovich Melatonin differentially modulate the expression and function of the hMT1 and hMT2 melatonin receptors upon prolonged withdrawal, Biochem. Pharmacol. 65(5), 731–739 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. S.M. Reppert, D.R. Weaver, and T. Ebisawa, Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses, Neuron. 13(5), 1177–1185 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. M.L. Dubocovich, M.A. Rivera-Bermudez, M.J. Gerdin, M.I. Masana, Molecular pharmacology, regulation and function of mammalian melatonin receptors, Front Biosci. 8, d1093–1108 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. S.M. Reppert, C. Godson, C.D. Mahle, D.R. Weaver, S.A. Slaugenhaupt, and J.F. Gusella, Molecular characterization of a second melatonin receptor expressed in human retina and brain: The MEL1b melatonin receptor, Proc. Natl. Acad. Sci. 92(19), 8734–8738 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. S.M. Reppert, D.R. Weaver, V.M. Cassone, C. Godson, and L.F. Kolakowski, Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain, Neuron. 15(5), 1003–1015 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. M.L. Dubocovich, D.P. Cardinali, B. Guardiola-Lemaitre, R.M. Hagan, D.N. Krause, D. Sugden, P.M. Vanhoutte, and F.D. Yocca, in: The IUPHAR Compendium of Receptor Characterization and Classification (IUPHAR Media, London, U.K., 1998), pp. 187–193.

    Google Scholar 

  23. C. Mazzucchelli, M. Pannacci, R. Nonno, V. Lucini, F. Fraschini, and B.M. Stankov, The melatonin receptor in the human brain: cloning experiments and distribution studies, Brain Res. Mol. Brain Res. 39(1–2), 117–126 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. W.M. Al-Ghoul, M.D Herman, and M.L. Dubocovich, Melatonin receptor subtype expression in human cerebellum, Neuro Report. 9(18), 4063–4068 (1998).

    CAS  Google Scholar 

  25. M.A. Rivera-Bermudez, M.I. Masana, G.M., Brown, D.J. Earnest, and M.L. Dubocovich, Immortalized cells from the rat suprachiasmatic nucleus express functional melatonin receptors, Brain Res. 1002(1–2), 21–27 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. T. Ebisawa, S. Karne, M.R. Lerner, and S.M. Reppert, Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores, Proc. Natl. Acad. Sci. 91(13), 6133–6137 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. C. Tenn, and L.P. Niles, Physiological regulation of melatonin receptors in rat suprachiasmatic nuclei: Diurnal rhythmicity and effects of stress, Mol. Cell Endocrinol. 98(1), 43–48 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. J. Vanecek, E. Kosar, and J. Vorlicek, Daily changes in melatonin binding sites and the effect of castration, Mol Cell Endocrinol. 73(2–3), 165–170 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. F. Gauer, M. Masson-Pévet, and P. Pévet, Pinealectomy and constant illumination increase the density of melatonin binding sites in the pars tuberalis of rodents, Brain Res. 575(1), 32–38 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. F. Gauer, M. Masson-Pévet, and P. Pévet, Melatonin receptor density is regulated in rat pars tuberalis and suprachiasmatic nuclei by melatonin itself, Brain Res. 602(1), 153–156 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. D.G. Hazlerrigg, A. Gonzalez-Brito, W. Lawson, M.H. Hastings, and P.J. Morgan, Prolonged exposure to melatonin leads to time-dependent sensitization of adenylate cyclase and down-regulates melatonin receptors in pars tuberalis cells from ovine pituitary, Endocrinology. 132(1), 285–292 (1993).

    Article  Google Scholar 

  32. L.L. Carlson, D.R. Weaver, and S.M. Reppert, Melatonin signal transduction in hamster brain: Inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein, Endocrinology. 125(5), 2670–2676 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. L.P. Niles, and F. Hashemi, Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus, Cell. Mol Neurobiol. 10(4), 553–558 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. L.P. Niles, M. Ye, D.S. Pickering, and S-W. Ying, Pertussis toxin blocks melatonin-induced inhibition of forskolin-stimulated adenylate cyclase activity in the chick brain, Biochem. Biophys. Res. Commun. 178(2), 786–792 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. L. Brydon, F. Roka, L. Petit, P. de Coppet, M. Tissot, P. Barrett, P.J. Morgan, C. Nanoff, A.D. Strosberg, and R. Jockers, Dual signaling of human Mel1a melatonin receptors via G (i2), G (i3), and G (q/11) proteins, Mol. Endocrinol. 13(12), 2025–2038 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. R.S. MacKenzie, M.A. Melan, D.K. Passey, and P.A. Witt-Enderby, Dual coupling of MT (1) and MT(2) melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure, Biochem. Pharmacol. 63(4), 587–595 (2002).

    CAS  Google Scholar 

  37. D. Roy, and D.D. Belsham, Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons, J. Biol. Chem. 277(1), 251–258 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. C.S. Nelson, J.L. Marino, and C.N. Allen, Melatonin receptors activate heteromeric G-protein coupled Kir3 channels, Neuroreport. 7(3), 717–720 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. M. van den Top, R.M. Bujis, J.M. Ruijiter, P. Delagrange, D. Spanswick, and M.L. Hermes, Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurons in vitro independent of their circadian rhythm, Neuroscience. 107(1), 99–108 (2001).

    Article  PubMed  Google Scholar 

  40. Q. Wan, H.Y. Man, F. Liu, J. Braunton, H.B. Niznik, S.F. Pang, Brown, G.M. and Y.T. Wang, Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors, Nat. Neurosci. 2(5), 401–403 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. L. Petit, I. Lacroix, P. de Coppet, A.D. Strosberg, and R. Jockers, Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3′–5′monophosphate pathway, Biochem. Pharmacol. 58(4), 633–639 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. L. Brydon, L. Petit, P. Delagrange, A.D. Strosberg, and R. Jockers, Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes, Endocrinology. 142(10), 4264–4271 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. J.E. Drew, P. Barrett, S. Conway, P. Delagrange, and P.J. Morgan, Differential coupling of the extreme C-terminus of G protein alpha subunits to the G protein-coupled melatonin receptors, Biochim. Biophys. Acta. 1592(2), 185–192 (2002).

    PubMed  CAS  Google Scholar 

  44. M.E. Gnegy, Calmodulin in neurotransmitter and hormone action, Annu. Rev. Pharmacol. Toxicol. 33, 45–70 (1993).

    Article  PubMed  CAS  Google Scholar 

  45. H. Wang, and D.R. Storm, Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system, Mol. Pharmacol. 63(3), 463–468 (2003).

    Article  PubMed  Google Scholar 

  46. G. Benitez-King, L. Huerto-Delgadillo, and F. Anton-Tay, Melatonin modifies calmodulin cell levels in MDCK and N1E-115 cell lines and inhibits phosphodiesterase activity in vitro, Brain Res. 557(1–2), 289–292 (1991).

    Article  PubMed  CAS  Google Scholar 

  47. G. Benítez-King, L. Huerto-Delgadillo, and F. Antón-Tay, Binding of 3H-melatonin to Calmodulin, Life Sci. 53(3), 201–207 (1993).

    Article  PubMed  Google Scholar 

  48. G. Benitez-King, and F. Anton-Tay, Calmodulin mediates melatonin cytoskeletal effects, Experientia. 49(8), 635–641 (1993).

    Article  PubMed  CAS  Google Scholar 

  49. F. Anton-Tay, G. Ramirez, I. Martinez, and G. Benitez-King, In vitro stimulation of protein kinase C by melatonin, Neurochem. Res. 23(5), 601–606 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. J.G. MacFarlane, J.M. Cleghorn, G.M. Brown, and D.L. Streiner, The effects of exogenous melatonin on the total sleep time and daytime alertness of chronic insomniacs: A preliminary study, Biol. Psychiatry. 30(4), 371–376 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. A.B. Dollins, H.J. Lynch, R.J. Wurtman, M.H. Deng, K.U. Kischka, R.E. Gleason, and H.R. Lieberman, Effect of pharmacological daytime doses of melatonin on human mood and performance, Psychopharmacol. 112(4), 490–496 (1993).

    Article  CAS  Google Scholar 

  52. J. Arendt, S. Deacon, J. English, S. Hampton, and L. Morgan, Melatonin and adjustment to phase shift, J. Sleep Res. 4(52), 74–79 (1995).

    Article  PubMed  Google Scholar 

  53. C.C. Tenn, and L.P. Niles, Modulation of dopaminergic activity in the striatum by benzodiazepines and melatonin, Pharmacol. Rev. Commun. 12(3), 171–178 (2002).

    Article  CAS  Google Scholar 

  54. E. Mignot, S. Taheri, and S. Nishino, Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders, Nat. Neurosci. 5(S1), 1071–1075 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. F. Wang, J. Li, C. Wu, J. Yang, F. Xu, and Q. Zhao The GABA (A) receptor mediates the hypnotic activity of melatonin in rats, Pharmacol. Biochem. Behav. 74(3), 573–578 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. A.B. Dollins, I.V. Zhdanova, R.J. Wurtman, H.J. Lynch, and M.H. Deng, Effect of inducing noctural serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance, Proc. Natl. Acad. Sci. 91(5), 1824–1828 (1994).

    Article  PubMed  CAS  Google Scholar 

  57. R. Nave, P. Herer, I. Haimov, A. Shlitner and P. Lavie, Hypnotic and hypothermic effects of melatonin on daytime sleep in humans: lack of antagonism by flumazenil, Neurosci. Lett. 214(2–3), 123–126 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. D.C. Skinner, and B. Malpaux, High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus, Endocrinology. 140(10), 4399–4405 (1999).

    Article  PubMed  CAS  Google Scholar 

  59. B. Stankov, G. Biella, C. Panara, V. Lucini, S. Capsoni, J. Fauteck, B. Cozzi, and F. Fraschini, Melatonin signal transduction and mechanism of action in the central nervous system: Using the rabbit cortex as a model, Endocrinology. 130(4), 2152–2159 (1992).

    Article  PubMed  CAS  Google Scholar 

  60. S. Shibata, V.M. Cassone, and R.Y. Moore, Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro, Neurosci. Lett. 97(1–2), 140–144 (1989).

    Article  PubMed  CAS  Google Scholar 

  61. J. Stehle, J. Vanecek, and L. Vollrath, Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: an in vitro iontophoretic study, J. Neural Transm. 78(2), 173–177 (1989).

    Article  PubMed  CAS  Google Scholar 

  62. J.E. Sherin, P.J. Shiromani, R.W. McCarley, and C.B. Saper, Activation of ventrolateral preoptic neurons during sleep, Science. 271(5246), 216–219 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. R Szymusiak, N. Alam, T.L. Steininger, and D. McGinty, Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats, Brain Res. 803(1–2), 178–188 (1998).

    Article  PubMed  CAS  Google Scholar 

  64. J. Lu, M.A. Greco, P. Shiromani, C.B. Saper, Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep, J. Neurosci. 20(10), 3830–3842 (2000).

    PubMed  CAS  Google Scholar 

  65. D. McGinty, and R. Szymusiak, Brain structures and mechanisms involved in the generation of NREM sleep: focus on the preoptic hypothalamus, Sleep Med. Rev. 5(4), 323–342 (2001).

    Article  PubMed  Google Scholar 

  66. J.E. Sherin, J.K. Elmquist, F. Torrealba, and C.B. Saper, Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat, J. Neurosci. 18(12), 4705–4721 (1998).

    PubMed  CAS  Google Scholar 

  67. C.B. Saper, T.C. Chou, and T.E. Scammell, The sleep switch: hypothalamic control of sleep and wakefulness, Trends Neurosci. 24(12), 726–731 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. C. Liu, D.R. Weaver, X. Jin, L.P. Shearman, R.L. Pieschl, V.K. Gribkoff, and S.M. Reppert, Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock, Neuron. 19(1), 91–102 (1997).

    Article  PubMed  CAS  Google Scholar 

  69. E.F. Pace-Schott, and J.A. Hobson, The neurobiology of sleep: genetics, cellular physiology and subcortical networks, Nat. Rev. Neurosci. 3(8), 591–605 (2002).

    PubMed  CAS  Google Scholar 

  70. S. Deurveilher, and K. Semba, Indirect projections from the suprachiasmatic nucleus to the median preoptic nucleus in rat, Brain Res. 987(1), 100–106 (2003).

    Article  PubMed  CAS  Google Scholar 

  71. X. Sun, B. Rusak, and K. Semba, Electrophysiology and pharmacology of projections from the suprachiasmatic nucleus to the ventromedial preoptic area in rat, Neuroscience. 98(4), 715–728 (2000).

    Article  PubMed  CAS  Google Scholar 

  72. T.C. Chou, A.A. Bjorkum, S.E. Gaus, Lu J. Scammell and C.B. Saper, Afferents to the ventrolateral preoptic nucleus, J. Neurosci. 22(3), 977–990 (2002).

    PubMed  CAS  Google Scholar 

  73. D. Gervasoni, L. Darracq, P. Fort, F. Souliere, G. Chouvet, and P.H. Luppi, Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep, Eur. J. Neurosci. 10(3), 964–970 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. T.S. Kilduff, and C. Peyron, The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders, Trends Neurosci. 23(8), 359–365 (2000).

    Article  PubMed  CAS  Google Scholar 

  75. S. Honma, and K. Honma, The biological clock: Ca2+ links the pendulum to the hands, Trends Neurosci. 26(12), 650–653 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. D.N. Krause, and M.L. Dubocovich, Melatonin receptors, Annu. Rev. Pharmacol. Toxicol. 31, 549–568 (1991).

    Article  PubMed  CAS  Google Scholar 

  77. A.J. McArthur, M.U. Gillette, and R.A. Prosser, Melatonin directly resets the rat suprachiasmatic circadian clock in vitro, Brain Res. 565(1), 158–161 (1991).

    Article  PubMed  CAS  Google Scholar 

  78. M.U. Gillette, and R.A. Prosser, Circadian rhythm of the rat suprachiasmatic brain slice is rapidly reset by daytime application of cAMP analogs, Brain Res. 474(2), 348–352 (1988).

    Article  PubMed  CAS  Google Scholar 

  79. R.A. Prosser, and M.U. Gillette, The mammalian circadian clock in the suprachiasmatic nuclei is reset in vitro by cAMP, J. Neurosci. 9(3), 1073–1081 (1989).

    PubMed  CAS  Google Scholar 

  80. R.A. Prosser, A.J. McArthur, and M.U. Gillette, cGMP induces phase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects, Proc. Natl. Acad. Sci. 86(17), 6812–6815 (1989).

    Article  PubMed  CAS  Google Scholar 

  81. A.J. McArthur, A.E. Hunt, and M.U. Gillette, Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn, Endocrinology. 138(2), 627–634 (1997).

    Article  PubMed  CAS  Google Scholar 

  82. D.J. Skene, S.W. Lockley, and J. Arendt, Use of melatonin in the treatment of phase shift and sleep disorders, Adv. Exp. Med. Biol. 467, 79–84 (1999).

    PubMed  CAS  Google Scholar 

  83. K.M. Sharkey, and C.I. Eastman, Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study, Am. J. Physiol. Regul. Integr. Comp. Physiol. 282(2), R454–R463 (2002).

    PubMed  CAS  Google Scholar 

  84. L.M. Hack, S.W. Lockley, J. Arendt, and D.J. Skene, The effects of low-dose 0.5mg.melatonin on the free-running circadian rhythms of blind subjects, J. Biol. Rhythms. 18(5), 420–429 (2003).

    Article  PubMed  CAS  Google Scholar 

  85. M. Crasson, S. Kjiri, A. Colin, K. Kjiri, M. L’Hermite-Baleriaux, M. Ansseau, and J.J. Legros, Serum melatonin and urinary 6-sulfatoxymelatonin in major depression, Psychoneuroendocrinol. 29(1), 1–12 (2004).

    Article  CAS  Google Scholar 

  86. C. Liu, and S.M. Reppert, GABA synchronizes clock cells within the suprachiasmatic circadian clock, Neuron. 25(1), 123–128 (2000).

    Article  PubMed  CAS  Google Scholar 

  87. C.M. Novak, and H.E. Albers, Novel phase-shifting effects of GABAA receptor activation in the suprachiasmatic nucleus of a diurnal rodent, Am. J. Physiol. Regul. Integr. Comp. Physiol. 286(5), R820–R825 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. R.Y. Moore, and J.C. Speh, GABA is the principal neurotransmitter of the circadian system, Neurosci. Lett. 150(1), 112–116 (1993).

    Article  PubMed  CAS  Google Scholar 

  89. M.A. Belenky, N. Sagiv, J.M. Fritschy, and Y. Yarom, Presynaptic and postsynaptic GABAA receptors in rat suprachiasmatic nucleus, Neuroscience. 118(4), 909–923 (2003).

    Article  PubMed  CAS  Google Scholar 

  90. R.M. Buijs, Y.X. Hou, S. Shinn, and L.P. Renaud, Ultrastructural evidence for intra-and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus, J. Comp. Neurol. 340(3), 381–391 (1994).

    Article  PubMed  CAS  Google Scholar 

  91. N. Brandon, J. Jovanovic, and S. Moss, Multiple roles of protein kinases in the modulation of gamma-aminobutyric acid (A) receptor function and cell surface expression, Pharmacol. Ther. 94(1–2), 113–122 (2002).

    Article  PubMed  CAS  Google Scholar 

  92. J.T. Kittler, and S.J. Moss, Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition, Curr. Opin. Neurobiol. 13(3), 341–347 (2003).

    Article  PubMed  CAS  Google Scholar 

  93. B. Gao, J.M. Fritschy, and R.Y. Moore, GABAA-receptor subunit composition in the circadian timing system, Brain Res. 700(1–2), 142–156 (1995).

    Article  PubMed  CAS  Google Scholar 

  94. B.F. O’Hara, R. Andretic, H.C. Heller, D.B. Carter and T.S. Kilduff, GABAA, GABAC, and NMDA receptor subunit expression in the suprachiasmatic nucleus and other brain regions, Brain Res. Mol. Brain Res. 28(2), 239–250 (1995).

    Article  PubMed  Google Scholar 

  95. P. Poisbeau, M.C. Cheney, M.D. Browning, and I. Mody, Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons, J. Neurosci. 19(2), 674–683 (1999).

    PubMed  CAS  Google Scholar 

  96. McDonald, B.J., Amato, A., Connolly, C.N., Benke, D., Moss, S.J. and Smart, T.G., Adjacent phosphorylation sites on GABAA receptor beta subunits determine regulation by cAMP-dependent protein kinase, Nat. Neurosci. 1(1), 23–28 (1998).

    Article  PubMed  CAS  Google Scholar 

  97. N.J. Brandon, P. Delmas, J.T. Kittler, B.J. McDonald, W. Sieghart, D.A. Brown, T.G. Smart, and S.J. Moss, GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway, J. Biol. Chem. 275(49), 38856–38862 (2000).

    Article  PubMed  CAS  Google Scholar 

  98. J. Feng, X. Cai, J. Zhao, and Z. Yan, Serotonin receptors modulate GABA (A) receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons, J. Neurosci. 21(17), 6502–6511 (2001).

    PubMed  CAS  Google Scholar 

  99. M.A. Rivera-Bermudez, M.J. Gerdin, D.J. Earnest and M.L. Dubocovich, Regulation of basal rhythmicity in protein kinase C activity by melatonin in immortalized rat suprachiasmatic nucleus cells, Neurosci. Lett. 346(1–2), 37–40 (2003).

    Article  PubMed  CAS  Google Scholar 

  100. G. Milligan, Regional distribution and quantitative measurement of the phosphoinositidase C-linked guanine nucleotide binding proteins G11 alpha and Gq alpha in rat brain, J. Neurochem. 61(3), 845–851 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Niles, L.P. (2006). Molecular Mechanisms of Melatonin Action: Targets in Sleep Regulation. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_6

Download citation

Publish with us

Policies and ethics