Skip to main content

Basic Mechanisms of Circadian Rhythms and their Relation to the Sleep/Wake Cycle

  • Chapter
Book cover Neuroendocrine Correlates of Sleep/Wakefulness

Abstract

Organisms exhibit cyclic variations in a variety of essential functions, including the sleep-wake cycle, hormonal regulation, and reproduction. A primary environmental signal regulating these functions is the daily alternation of darkness and light exerted by the rotation of the earth. Superimposed upon the daily light-dark cycle is a seasonal influence that modifies the relative durations of day and night over the course of a year. These environmental changes make it necessary for organisms to be able to modify their behavior so that they are active during times when the opportunity to acquire nutritional resources exceeds the risk of predation, and resting during times when the need for vigilance is minimized. Be they day-active or night-active, all organisms need a means of keeping time in a 24-hour world and adjusting to changes in day length or transition times that may occur

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Buijs, C. G. van Eden, V. D. Goncharuk and A. Kalsbeek, The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J. Endocrinol. 177, 17–26 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. C. Cajochen, K. Krauchi and A. Wirz-Justice, Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocrinol. 15, 432–437 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. S. E. la Fleur, Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J. Neuroendocrinol. 15, 315–322 (2003).

    Article  PubMed  Google Scholar 

  4. F. K. Stephan and I. Zucker, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic leions. Proc. Natl. Acad. Sci. U.S.A. 69, 1583–1586 (1972).

    Article  PubMed  CAS  Google Scholar 

  5. R. Y. Moore and V. B. Eichler, Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article  PubMed  CAS  Google Scholar 

  6. R. Drucker-Colin, R. Aguilar-Roblero, F. Garcia-Hernandez, F. Fernandez-Cancino and F. B. Rattoni, Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res. 311, 353–357 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. M. R. Ralph, R. G. Foster, F. C. Davis and M. Menaker, Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. R. Y. Moore, J. C. Speh and R. K. Leak, Suprachiasmatic nucleus organization. Cell Tissue Res. 309, 89–98 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. R. K. Leak and R. Y. Moore, Topographic organization of suprachiasmatic nucleus projection neurons. J. Compara. Neurol. 433, 312–334 (2001).

    Article  CAS  Google Scholar 

  10. E. E. Abrahamson, R. K. Leak and R. Y. Moore, The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12(2), 435–440 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. T. C. Chou, A. A. Bjorkum, S. E. Gaus, J. Lu, T. E. Scammell and C. B. Saper, Afferents to the ventrolateral preoptic nucleus. J. Neurosci. 22(3), 977–990 (2002).

    PubMed  CAS  Google Scholar 

  12. A. Kalsbeek and R. M. Buijs, Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 309, 109–118 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. A. Kramer, F.-C. Yang, P. Snodgrass, et al., Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294, 2511–2515 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. Y. Cheng, C. M. Bullock, C. Li, et al., Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. S. Mosko and R. Moore, Retinohypothalamic tract development: alteration by suprachiasmatic lesions in the neonatal rat. Brain Res. 164, 1–15 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. B. Rusak, Neural mechanisms for entrainment and generation of mammalian circadian rhythms. Fed. Proc. 38(12), 2589–2595 (1979).

    PubMed  CAS  Google Scholar 

  17. R. F. Johnson, R. Y. Moore and L. P. Morin, Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 460, 297–313 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. S. Hattar, R. J. Lucas, N. Mrosovsky, et al., Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76–81 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. D. M. Berson, F. A. Dunn and M. Takao, Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. J. Hannibal, J. M. Ding, D. Chen, et al., Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17, 2637–2644 (1997).

    PubMed  CAS  Google Scholar 

  21. M. Medanic and M. U. Gillette, Suprachiasmatic circadian pacemaker of rat shows two windows of sensitivity to neuropeptide Y in vitro. Brain Res. 620, 281–286 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. P. C. Yannielli and M. E. Harrington, The neuropeptide Y Y5 receptor mediates the blockade of “photic-like” NMDA-induced phase shifts in the golden hamster. J. Neurosci. 21(14), 5367–5373 (2001).

    PubMed  CAS  Google Scholar 

  23. V. Reghunandanan, R. Reghunandanan and P. I. Singh, Neurotransmitters of the suprachiasmatic nucleus: role in the regulation of circadian rhythms. Prog. Neurobiol. 41, 647–655 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. A. N. Van den Pol and K. L. Tsujimoto, Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15, 1049–1086 (1985).

    Article  PubMed  Google Scholar 

  25. S. Barassin, S. Raison, M. Saboureau, et al., Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. Eur. J. Neurosci. 15, 833–840 (2002).

    Article  PubMed  Google Scholar 

  26. K. G. Bina, B. Rusak and K. Semba, Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J. Compara. Neurol. 335, 295–307 (1993).

    Article  CAS  Google Scholar 

  27. H. Cui and J. G. Malpeli, Activity in the parabigeminal nucleus during eye movements directed at moving and stationary targets. J. Neurophysiol. 89(6), 3128–3142 (2003).

    Article  PubMed  Google Scholar 

  28. K. Semba, Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav. Brain Res. 115, 117–141 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. S. Deurveilher and E. Hennevin, Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats. Eur. J. Neurosci. 13, 1963–1976 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. D. J. Green and R. Gillette, Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 245, 198–200 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. R. A. Prosser and M. U. Gillette, The mammalian circadian clock in the suprachiasmatic nuclei is reset in vitro by cAMP. J. Neurosci. 9(3), 1073–1081 (1989).

    PubMed  CAS  Google Scholar 

  32. M. Medanic and M. U. Gillette, Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day. J. Physiol. 450, 629–642 (1992).

    PubMed  CAS  Google Scholar 

  33. J. D. Glass, L. A. DiNardo and J. C. Ehlen, Dorsal raphe nuclear stimulation of SCN serotonin release and circadian phase-resetting. Brain Res. 859, 224–232 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. T. E. Dudley, L. A. Dinardo and J. D. Glass, In vivo assessment of the midbrain raphe nuclear regulation of serotonin release in the hamster suprachiasmatic nucleus. J. Neurophysiol. 81(4), 1469–1477 (1999).

    PubMed  CAS  Google Scholar 

  35. T. E. Dudley, L. A. DiNardo and J. D. Glass, Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J. Neurosci. 18(13), 5045–5052 (1998).

    PubMed  CAS  Google Scholar 

  36. G. H. Grossman, R. E. Mistlberger, M. C. Antle, J. C. Ehlen and J. D. Glass, Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus. Neuroreport 11(9), 1929–1932 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. K. J. Bobrzynska, N. Vrang and N. Mrosovsky, Persistence of nonphotic phase shifts in hamsters after serotonin depletion in the suprachiasmatic nucleus. Brain Res. 741(1–2), 205–214 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. M. C. Antle, E. G. Marchant, L. Niel and R. E. Mistlberger, Serotonin antagonists do not attenuate activity-induced phase shifts of circadian rhythms in the Syrian hamster. Brain Res. 813, 139–149 (1998).

    Article  PubMed  CAS  Google Scholar 

  39. J. Hannibal, M. Moller, O. P. Ottersen and J. Fahrenkrug, PACAP and glutamate are co-stored in the retinohypothalamic tract. J. Compara. Neurol. 418, 147–155 (2000).

    Article  CAS  Google Scholar 

  40. C. Fukuhara, N. Suzuki, Y. Matsumoto, et al., Day-night variation of pituitary adenylate cyclase-activating polypeptide (PACAP) level in the rat suprachiasmatic nucleus. Neurosci. Lett. 229, 49–52 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. H. D. Piggins, E. G. Marchant, D. Goguen and B. Rusak, Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neurosci. Lett. 305, 25–28 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. H. E. Albers and C. F. Ferris, Neuropeptide Y: role in light-dark cycle entrainment of hamster circadian rhythms. Neurosci. Lett. 50, 163–168 (1984).

    Article  PubMed  CAS  Google Scholar 

  43. K. L. Huhman and H. E. Albers, Neuropeptide Y microinjected into the suprachiasmatic region phase shifts circadian rhythms in constant darkness. Peptides 15(8), 1475–1478 (1994).

    Article  PubMed  CAS  Google Scholar 

  44. B. Rusak, J. H. Meijer and M. E. Harrington, Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Res. 493, 283–291 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. S. M. Biello and N. Mrosovsky, Blocking the phase-shifting effect of neuropeptide Y with light. Proc. R. Soc. Lond., B, Biol. Sci. 259, 179–187 (1995).

    Article  CAS  Google Scholar 

  46. S. M. Biello, D. A. Golombek and M. E. Harrington, Neuropeptide Y and glutamate block each other’s phase shifts in the suprachiasmatic nucleus in vitro. Neuroscience 77(4), 1049–1057 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. K. L. Huhman, T. O. Babagbemi and H. E. Albers, Bicuculline blocks neuropeptide Y-induced phase advances when microinjected in the suprachiasmatic nucleus of syrian hamsters. Brain Res. 675, 333–336 (1995).

    Article  PubMed  CAS  Google Scholar 

  48. M. U. Gillette and R. A. Prosser, Circadian rhythm of the rat suprachiasmatic brain slice is rapidly reset by daytime application of cAMP analogs. Brain Res. 474, 348–352 (1988).

    Article  PubMed  CAS  Google Scholar 

  49. R. A. Prosser and M. U. Gillette, Cyclic changes in cAMP concentration and phosphodiesterase activity in a mammalian circadian clock studied in vitro. Brain Res. 568, 185–192 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. M. U. Gillette and A. J. McArthur, Circadian actions of melatonin at the suprachiasmatic nucleus. Behav. Brain Res. 73, 135–139 (1996).

    Article  PubMed  CAS  Google Scholar 

  51. P. W. Cheung and C. E. McCormick, Failure of pinealectomy or melatonin to alter circadian activity rhythm of the rat. Am. J. Physiol. 242, R261–R264 (1982).

    PubMed  CAS  Google Scholar 

  52. V. M. Cassone, M. J. Chesworth and S. M. Armstrong, Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol. Behav. 36, 1111–1121 (1986).

    Article  PubMed  CAS  Google Scholar 

  53. V. M. Cassone, M. H. Roberts and R. Y. Moore, Effects of melatonin on 2-deoxy-[1-14C]glucose uptake within rat suprachiasmatic nucleus. Am. J. Physiol. 255(2), R332–R337 (1988).

    PubMed  CAS  Google Scholar 

  54. S. Shibata, V. M. Cassone and R. Y. Moore, Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci. Lett. 97, 140–144 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. R. R. Margraf and G. R. Lynch, An in vitro circadian rhythm of melatonin sensitivity in the suprachiasmatic nucleus of the Djungarian hamster, Phodopus sungorus. Brain Res. 609, 45–50 (1993).

    Article  CAS  Google Scholar 

  56. A. J. McArthur, M. U. Gillette and R. A. Prosser, Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res. 565, 158–161 (1991).

    Article  PubMed  CAS  Google Scholar 

  57. A. J. McArthur, A. E. Hunt and M. U. Gillette, Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138(2), 627–634 (1997).

    Article  PubMed  CAS  Google Scholar 

  58. A. E. Hunt, W. M. Al-Ghoul, M. U. Gillette and M. L. Dubocovich, Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am. J. Physiol. 280, C110–C118 (2001).

    CAS  Google Scholar 

  59. T. Shirakawa and R. Y. Moore, Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci. Lett. 178, 47–50 (1994).

    Article  PubMed  CAS  Google Scholar 

  60. J. M. Ding, D. Chen, E. T. Weber, L. E. Faiman, M. A. Rea and M. U. Gillette, Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).

    Article  PubMed  CAS  Google Scholar 

  61. S. Shibata, A. Watanabe, T. Hamada, M. Ono and S. Watanabe, N-methyl-Daspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am. J. Physiol. 267(2), R360–R364 (1994).

    PubMed  CAS  Google Scholar 

  62. A. Watanabe, T. Hamada, S. Shibata and S. Watanabe, Effects of nitric oxide synthase inhibitors on N-methyl-D-aspartate-induced phase delay of circadian rhythm of neuronal activity in the rat suprachiasmatic nucleus in vitro. Brain Res. 646, 161–164 (1994).

    Article  PubMed  CAS  Google Scholar 

  63. A. Watanabe, M. Ono, S. Shibata and S. Watanabe, Effect of a nitric oxide synthase inhibitor, N-nitro-L-arginine methylester, on light-induced phase delay of circadian rhythm of wheel-running activity in golden hamsters. Neurosci. Lett. 192, 25–28 (1995).

    Article  PubMed  CAS  Google Scholar 

  64. E. T. Weber, R. L. Gannon, A. M. Michel, M. U. Gillette and M. A. Rea, Nitric oxide synthase inhibitor blocks light-induced phase shifts of the circadian activity rhythm, but not c-fos expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Res. 692, 137–142 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. J. M. Ding, G. F. Buchanan, S. A. Tischkau, et al., A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394, 381–384 (1998).

    Article  PubMed  CAS  Google Scholar 

  66. J. M. Ding, L. E. Faiman, W. J. Hurst, L. R. Kuriashkina and M. U. Gillette, Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J. Neurosci. 17(2), 667–675 (1997).

    PubMed  CAS  Google Scholar 

  67. S. A. Tischkau, J. W. Mitchell, S.-H. Tyan, G. F. Buchanan and M. U. Gillette, Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 278(2), 718–723 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. P. C. Yannielli and M. E. Harrington, Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo. Neuroreport 11(7), 1587–1591 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. E. M. Mintz, A. M. Jasnow, C. F. Gillespie, K. L. Huhman and H. E. Albers, GABA interacts with photic signaling in the suprachiasmatic nucleus to regulate circadian phase shifts. Neuroscience 109(4), 773–778 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. R. A. Prosser, Glutamate blocks serotonergic phase advances of the mammalian circadian pacemaker through AMPA and NMDA receptors. J. Neurosci. 21(19), 7815–7822 (2001).

    PubMed  CAS  Google Scholar 

  71. M. J. Bradbury, W. C. Dement and D. M. Edgar, Serotonin-containing fibers in the suprachiasmatic hypothalamus attenuate light-induced phase delays in mice. Brain Res. 768, 125–134 (1997).

    Article  PubMed  CAS  Google Scholar 

  72. A. L. Bergstrom, J. Hannibal, P. Hindersson and J. Fahrenkrug, Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur. J. Neurosci. 18, 2552–2562 (2003).

    Article  PubMed  CAS  Google Scholar 

  73. D. Chen, G. F. Buchanan, J. M. Ding, J. Hannibal and M. U. Gillette, Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. U.S.A. 96, 13468–13473 (1999).

    Article  PubMed  CAS  Google Scholar 

  74. S. A. Tischkau, E. A. Gallman, G. F. Buchanan and M. U. Gillette, Differential cAMP gating of glutamatergic signaling regulates long-term state changes in the suprachiasmatic circadian clock. J. Neurosci. 20(20), 7830–7837 (2000).

    PubMed  CAS  Google Scholar 

  75. M. Zatz and M. J. Brownstein, Intraventricular carbachol mimics the effects of light on the circadian rhythm in the rat pineal gland. Science 203, 358–360 (1979).

    Article  PubMed  CAS  Google Scholar 

  76. M. Zatz and M. A. Herkenham, Intraventricular carbachol mimics the phaseshifting effect of light on the circadian rhythm of wheel-running activity. Brain Res. 212, 234–238 (1981).

    Article  PubMed  CAS  Google Scholar 

  77. D. J. Earnest and F. W. Turek, Role for acetylcholine in mediating effects of light on reproduction. Science 219, 77–79 (1983).

    Article  PubMed  CAS  Google Scholar 

  78. N. Murakami, K. Takahashi and K. Kawashima, Effect of light on the acetylcholine concentrations of the suprachiasmatic nucleus in the rat. Brain Res. 311, 358–360 (1984).

    Article  PubMed  CAS  Google Scholar 

  79. R. J. Wenthold. Glutamate and aspartate as neurotransmitters for the auditory nerve. In: Glutamate as a Neurotransmitter, edited by G. DiChiara and G. L. Gessa (Raven Press, New York, 1981) pp. 69–78.

    Google Scholar 

  80. O. Yasuhara, I. Tooyama, Y. Aimi, et al., Demonstration of choinergic ganglion cells in rat retina: expression of an alternative splice variant of choline acetyltransferase. J. Neurosci. 23(7), 2872–2881 (2003).

    PubMed  CAS  Google Scholar 

  81. J. R. Pauly and N. D. Horseman, Anticholinergic agents do not block lightinduced circadian phase shifts. Brain Res. 348, 163–167 (1985).

    Article  PubMed  CAS  Google Scholar 

  82. C. S. Colwell, C. M. Kaufman and M. Menaker, Phase-shifting mechanisms in the mammalian circadian system: new light on the carbachol paradox. J. Neurosci. 13(4), 1454–1459 (1993).

    PubMed  CAS  Google Scholar 

  83. C. Liu and M. U. Gillette, Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J. Neurosci. 16(2), 744–751 (1996).

    PubMed  CAS  Google Scholar 

  84. G. F. Buchanan and M. U. Gillette. Carbachol directly stimulating the SCN induces phase advances in mouse circadian rhythms throughout the night in vitro and in vivo. Abstract presented at: Society for Neuroscience, 2001.

    Google Scholar 

  85. G. F. Buchanan, L. R. Artinian, S. E. Hamilton, N. M. Nathanson and M. U. Gillette. The M1 muscarinic acetylcholine receptor is a necessary component in cholinergic circadian signaling. Abstract presented at: Society for Neuroscience, 2000.

    Google Scholar 

  86. G. F. Buchanan. Thesis: Cholinergic regulation of the mammalian circadian system: analysis of cholinergic-induced phase shifting in vivo and in vitro in wildtype and M1 knockout mice: Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 2002.

    Google Scholar 

  87. A. A. Borbely, A two process model of sleep regulation. Hum. Neurobiol. 1(3), 195–204 (1982).

    PubMed  CAS  Google Scholar 

  88. A. A. Borbely, Processes underlying sleep regulation. Horm. Res. 49, 114–117 (1998).

    Article  PubMed  CAS  Google Scholar 

  89. N. Ibuka and H. Kawamura, Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res. 96, 76–81 (1975).

    Article  PubMed  CAS  Google Scholar 

  90. N. Ibuka, S.-I. T. Inouye and H. Kawamura, Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res. 122, 33–47 (1977).

    Article  PubMed  CAS  Google Scholar 

  91. W. B. Mendelson, B. M. Bergmann and A. Tung, Baseline and post-deprivation recovery sleep in SCN-lesioned rats. Brain Research 980, 185–190 (2003).

    Article  PubMed  CAS  Google Scholar 

  92. I. Tobler, A. A. Borbely and G. Groos, The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci. Lett. 42, 49–54 (1983).

    Article  PubMed  CAS  Google Scholar 

  93. R. E. Mistlberger, B.M. Bergmann, W. Waldenar and A. Rechtschaffen, Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei lesioned rats. Sleep 6(3), 217–233 (1983).

    PubMed  CAS  Google Scholar 

  94. D. M. Edgar, W. C. Dement and C. A. Fuller, Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13(3), 1065–1079 (1993).

    PubMed  CAS  Google Scholar 

  95. M. C. Antle and R. E. Mistlberger, Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J. Neurosci. 20(24), 9326–9332 (2000).

    PubMed  CAS  Google Scholar 

  96. E. Challet, F.W. Turek, M.-A. Laute and O. V. Reeth, Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: role of serotonergic and metabolic signals. Brain Res. 909, 81–91 (2001).

    Article  PubMed  CAS  Google Scholar 

  97. S. F. Glotzbach, C. M. Cornett and H. C. Heller, Activity of suprachiasmatic and hypothalamic neurons during sleep and wakefulness in the rat. Brain Res. 419, 279–286 (1987).

    Article  PubMed  CAS  Google Scholar 

  98. T. Deboer, M. J. Vansteensel, L. Detari and J. H. Meijer, Sleep states alter activity of suprachiasmatic nucleus neurons. Nat. Neurosci. 6(10), 1086–1090 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Gillette, M.U., Abbott, S.M. (2006). Basic Mechanisms of Circadian Rhythms and their Relation to the Sleep/Wake Cycle. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_2

Download citation

Publish with us

Policies and ethics