Skip to main content

Disturbances of Hormonal Circadian Rhythms in Shift Workers

  • Chapter
Neuroendocrine Correlates of Sleep/Wakefulness

Abstract

In normal individuals living on a day-oriented schedule, it is hypothesized that a harmonious relationship between homeostatic and circadian processes serves to promote uninterrupted bouts of 8 hours of sleep and 16 hours of wakefulness per day.l.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 1995; 15(5):3526–3538.

    PubMed  CAS  Google Scholar 

  2. Daan S, Beersma DGM, Borbély AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 1984; 246(2 pt 2):R161–R183.

    PubMed  CAS  Google Scholar 

  3. Akerstedt T, Gillberg M. Sleep disturbances and shift work. In: Reinberg A, Vieux N, Andlauer P, editors. Night and shift work: biological and social aspects: proceedings of the Fifth International Symposium on Night and Shift Work, Scientific Committee on Shift Work of the Permanent Commission and International Association on Occupational Health (PCIAOH) Rouen, 12–16 May 1980. Oxford: Pergamon Press, 1981: 127–137.

    Google Scholar 

  4. Vokac Z, Lund L. Patterns and duration of sleep in permanent security night guards. J Hum Ergol (Tokyo) 1982; 11(Suppl.):311–316.

    Google Scholar 

  5. Fookson JE, Kronauer RE, Weitzman ED, Monk TH, Moline ML, Hoey E. Induction of insomnia on a non-24 hour sleep-wake schedule. Sleep Res 1984; 13:220.

    Google Scholar 

  6. Carskadon MA, Dement WC. Distribution of REM sleep on a 90 minute sleep-wake schedule. Sleep 1980; 2(3):309–317.

    PubMed  CAS  Google Scholar 

  7. Lavie P. Ultrashort sleep-wake cycle: timing of REM sleep. Evidence for sleep-dependent and sleep-independent components of the REM cycle. Sleep 1987; 10(1):62–68.

    PubMed  CAS  Google Scholar 

  8. Czeisler CA, Weitzman ED, Moore-Ede MC, Zimmerman JC, Kronauer RE. Human sleep: its duration and organization depend on its circadian phase. Science 1980; 210(4475):1264–1267.

    PubMed  CAS  Google Scholar 

  9. Weitzman ED, Czeisler CA, Zimmerman JC, Ronda JM. Timing of REM and stages 3 and 4 sleep during temporal isolation in man. Sleep 1980; 2(4):391–407.

    PubMed  CAS  Google Scholar 

  10. Brunner DP, Dijk DJ, Tobler I, Borbely AA. Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis. Electroencephalogr Clin Neurophysiol 1990; 75(6):492–499.

    PubMed  CAS  Google Scholar 

  11. Forêt J, Benoît O. Structure du sommeil chez des travailleurs à horaires alternants. Electroencephalogr Clin Neurophysiol 1974; 37(4):337–344.

    Google Scholar 

  12. Frese M, Harwich C. Shiftwork and the length and quality of sleep. J Occup Med 1984; 26(8):561–566.

    PubMed  CAS  Google Scholar 

  13. Rosekind MR, Hurd S, Buccino KR. Relationship of day versus night sleep to physician performance and mood. Ann Emerg Med 1994; 24(5):928–934.

    PubMed  Google Scholar 

  14. Bryden G, Holdstock TL. Effects of night duty on sleep patterns of nurses. Psychophysiology 1973; 10(1):36–42.

    PubMed  CAS  Google Scholar 

  15. Tepas DI, Walsh JK, Moss PD, Armstrong D. Polysomnographic correlates of shift worker performance in the laboratory. In: Reinberg A, Vieux N, Andlauer P, editors. Night and shift work: biological and social aspects: proceedings of the Fifth International Symposium on Night and Shift Work, Scientific Committee on Shift Work of the Permanent Commission and International Association on Occupational Health (PCIAOH) Rouen, 12–16 May 1980. Toronto: Pergamon Press, 1980: 179–186.

    Google Scholar 

  16. Forêt J, Benoît O. Predictable effects on individual sleep patterns during a rapidly rotating shift system. Int Arch Occup Environ Health 1980; 45:49–56.

    PubMed  Google Scholar 

  17. Weibel L, Spiegel K, Gronfier C, Follenius M, Brandenberger G. Twenty-four-hour melatonin and core body temperature rhythms: their adaptation in night workers. Am J Physiol 1997; 272(3 Pt 2):R948–R954.

    PubMed  CAS  Google Scholar 

  18. Weibel L, Spiegel K, Follenius M, Ehrhart J, Brandenberger G. Internal dissociation of the circadian markers of the cortisol rhythm in night workers. Am J Physiol 1996; 270(4 Pt 1):E608–E613.

    PubMed  CAS  Google Scholar 

  19. Weibel L, Brandenberger G. Disturbances in hormonal profiles of night workers during their usual sleep and work times. J Biol Rhythms 1998; 13(3):202–208.

    PubMed  CAS  Google Scholar 

  20. Sack RL, Blood ML, Lewy AJ. Melatonin rhythms in night shift workers. Sleep 1992; 15(5):434–441.

    PubMed  CAS  Google Scholar 

  21. Roden M, Koller M, Pirich K, Vierhapper H, Waldhauser F. The circadian melatonin and cortisol secretion pattern in permanent night shift workers. Am J Physiol 1993; 265(1 Pt 2):R261–R267.

    PubMed  CAS  Google Scholar 

  22. Costa G, Bertoldi A, Kovacic M, et al. Hormonal secretion of nurses engaged in fast-rotating shift systems. Int Arch Occup Environ Health 1997; 3(Suppl. 2): S35–S39.

    Google Scholar 

  23. Goh VH, Tong TY, Lim CL, Low EC, Lee LK. Circadian disturbances after night-shift work onboard a naval ship. Mil Med 2000; 165(2):101–105.

    PubMed  CAS  Google Scholar 

  24. Simon C, Weibel L, Brandenberger G. Twenty-four-hour rhythms of plasma glucose and insulin secretion rate in regular night workers. Am J Physiol Endocrinol Metab 2000; 278(3):E413–E420.

    PubMed  CAS  Google Scholar 

  25. Akerstedt T, Kecklund G, Knutsson A. Spectral analysis of sleep electroen-cephalography in rotating three-shift work. Scand J Work Environ Health 1991; 17(5):330–336.

    PubMed  CAS  Google Scholar 

  26. Kripke DF, Cook B, Lewis OF. Sleep of night workers: EEG recordings. Psychophysiology 1971; 7(3):377–384.

    Google Scholar 

  27. Van Cauter E, Spiegel K. Circadian and sleep control of hormonal secretions. In: Turek FW, Zee PC, editors. Regulation of sleep and circadian rhythms. New York: Marcel Dekker, Inc., 1999: 397–425.

    Google Scholar 

  28. Weitzman ED, Nogeire C, Perlow M et al. Effects of a prolonged 3-hour sleep-wake cycle on sleep stages, plasma cortisol, growth hormone and body temperature in man. J Clin Endocrinol Metab 1974; 38(6):1018–1030.

    PubMed  CAS  Google Scholar 

  29. Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 1971; 33(1):14–22.

    PubMed  CAS  Google Scholar 

  30. Orth DN, Island DP, Liddle GW. Experimental alteration of the circadian rhythm in plasma cortisol (17-OHCS) concentration in man. J Clin Endocrinol Metab 1967; 27(4):549–555.

    PubMed  CAS  Google Scholar 

  31. Weibel L, Follenius M, Spiegel K, Ehrhart J, Brandenberger G. Comparative effect of night and daytime sleep on the 24-hour cortisol secretory profile. Sleep 1995; 18(7):549–556.

    PubMed  CAS  Google Scholar 

  32. Leproult R, Colecchia EF, L’Hermite-Baleriaux M, Van Cauter E. Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J Clin Endocrinol Metab 2001; 86(1):151–157.

    PubMed  CAS  Google Scholar 

  33. Czeisler CA, Kronauer RE, Allan JS et al. Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science 1989; 244(4910):1328–1333.

    PubMed  CAS  Google Scholar 

  34. Van Cauter E, Sturis J, Byrne MM et al. Demonstration of rapid light-induced advances and delays of the human circadian clock using hormonal phase markers. Am J Physiol 1994; 266(6 Pt. 1):E953–E963.

    PubMed  Google Scholar 

  35. Boivin DB, Czeisler CA. Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light. Neuroreport 1998; 9(5):779–782.

    PubMed  CAS  Google Scholar 

  36. Follenius M, Brandenberger G, Bandesapt JJ, Libert JP, Ehrhart J. Nocturnal cortisol release in relation to sleep structure. Sleep 1992; 15(1):21–27.

    PubMed  CAS  Google Scholar 

  37. Rivest RW, Schulz P, Lustenberger S, Sizonenko PC. Differences between circadian and ultradian organization of cortisol and melatonin rhythms during activity and rest. J Clin Endocrinol Metab 1989; 68(4):721–729.

    PubMed  CAS  Google Scholar 

  38. Van Coevorden A, Mockel J, Laurent E et al. Neuroendocrine rhythms and sleep in aging men. Am J Physiol 1991; 260(4 pt 1):E651–E661.

    PubMed  Google Scholar 

  39. Allan JS, Czeisler CA. Persistence of the circadian thyrotropin rhythm under constant conditions and after light-induced shifts of circadian phase. J Clin Endocrinol Metab 1994; 79(2):508–512.

    PubMed  CAS  Google Scholar 

  40. Trinchard-Lugan I, Waldhauser F. The short term secretion pattern of human serum melatonin indicates a pulsatile hormone release. J Clin Endocrinol Metab 1989; 69(3):663–669.

    PubMed  CAS  Google Scholar 

  41. Weitzman ED, Weinberg U, D’Eletto R et al. Studies of the 24 hour rhythm of melatonin in man. J Neural Transm Suppl 1978; 13:325–337.

    PubMed  CAS  Google Scholar 

  42. Provencio I, Foster RG. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 1995; 694(1–2):183–190.

    PubMed  CAS  Google Scholar 

  43. Shanahan TL, Czeisler CA. Light exposure induces equivalent phase shifts of the endogenous circadian rhythms of circulating plasma melatonin and core body temperature in men. J Clin Endocrinol Metab 1991; 73(2):227–235.

    PubMed  CAS  Google Scholar 

  44. Lewy AJ, Wehr TA, Rosenthal NE et al. Melatonin secretion as a neurobiological “marker” and effects of light in humans. Psychopharmacol Bull 1982; 18(4):127–129.

    PubMed  CAS  Google Scholar 

  45. Czeisler CA, Allan JS, Strogatz SH et al. Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 1986; 233(4764):667–671.

    PubMed  CAS  Google Scholar 

  46. Mills JN, Minors DS, Waterhouse JM. Adaptation to abrupt time shifts of the oscillator [s] controlling human circadian rhythms. J Physiol 1978; 285:455–470.

    PubMed  CAS  Google Scholar 

  47. Wetterberg L. Melatonin in humans-physiological and clinical studies. J Neural Transm 1978; 13:289–310.

    CAS  Google Scholar 

  48. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science 1980; 210(4475):1267–1269.

    PubMed  CAS  Google Scholar 

  49. Brainard GC, Lewy AJ, Menaker M et al. Dose-response relationship between light irradiance and the suppression of plasma melatonin in human volunteers. Brain Res 1988; 454(1–2):212–218.

    PubMed  CAS  Google Scholar 

  50. Brainard GC, Rollag MD, Hanifin JP. Photic regulation of melatonin in humans: ocular and neural signal transduction. J Biol Rhythms 1997; 12(6):537–546.

    PubMed  CAS  Google Scholar 

  51. Bojkowski CJ, Aldhous ME, English J et al. Suppression of nocturnal plasma melatonin and 6-sulphatoxymelatonin by bright and dim light in man. Horm Metabol Res 1987; 19(9):437–440.

    CAS  Google Scholar 

  52. McIntyre IM, Norman TR, Burrows GD, Armstrong SM. Quantal melatonin suppression by exposure to low intensity light in man. Life Sci 1989; 45(4):327–332.

    PubMed  CAS  Google Scholar 

  53. Trinder J, Armstrong SM, O’Brien C, Luke D, Martin MJ. Inhibition of melatonin secretion onset by low levels of illumination. J Sleep Res 1996; 5(2):77–82.

    PubMed  CAS  Google Scholar 

  54. Weibel L, Follenius M, Spiegel K, Gronfier C, Brandenberger G. Growth hormone secretion in night workers. Chronobiol Int 1997; 14(1):49–60.

    PubMed  CAS  Google Scholar 

  55. Moline ML, Monk TH, Wagner DR et al. Human growth hormone release is decreased during sleep in temporal isolation (free-running). Chronobiologia 1986; 13(1):13–19.

    PubMed  CAS  Google Scholar 

  56. Weitzman ED, Czeisler CA, Zimmerman JC, Moore-Ede MC. Biological rhythms in man: relationship of sleep-wake, cortisol, growth hormone and temperature during temporal isolation. In: Martin JB, Reichlin S, Bick K, editors. Adv Biochem Psychopharmacol: Neurosecretion and Brain Peptides. New York: Raven Press, 1981: 475–499.

    Google Scholar 

  57. Alford FP, Baker HW, Burger HG et al. Temporal patterns of integrated plasma hormone levels during sleep and wakefulness. I. Thyroid-stimulating hormone, growth hormone and cortisol. J Clin Endocrinol Metab 1973; 37(6):841–847.

    PubMed  CAS  Google Scholar 

  58. Pietrowsky R, Meyrer R, Kern W, Born J, Fehm HL. Effects of diurnal sleep on secretion of cortisol, luteinizing hormone, and growth hormone in man. J Clin Endocrinol Metab 1994; 78(3):683–687.

    PubMed  CAS  Google Scholar 

  59. Czeisler CA, Klerman EB. Circadian and sleep-dependent regulation of hormone release in humans. Recent Prog Horm Res 1999; 54:97–132.

    PubMed  CAS  Google Scholar 

  60. Weitzman ED, Pollak CP. Effects of flurazepam on sleep and growth hormone release during sleep in healthy subjects. Sleep 1982; 5(4):343–349.

    PubMed  CAS  Google Scholar 

  61. Plotnick LP, Thompson RG, Kowarski A, de L L, Migeon CJ, Blizzard RM. Circadian variation of integrated concentration of growth hormone in children and adults. J Clin Endocrinol Metab 1975; 40(2):240–247.

    PubMed  CAS  Google Scholar 

  62. Suvanto S, Harma M, Laitinen JT. The prediction of the adaptation of circadian rhythms to rapid time zone changes. Ergonomics 1993; 36(1–3):111–116.

    PubMed  CAS  Google Scholar 

  63. Mullington J, Hermann D, Holsboer F, Pollmacher T. Age-dependent suppression of nocturnal growth hormone levels during sleep deprivation. Neuroendocrinology 1996; 64(3):233–241.

    PubMed  CAS  Google Scholar 

  64. Waldstreicher J, Duffy JF, Brown EN, Rogacz S, Allan JS, Czeisler CA. Gender differences in the temporal organization of prolactin (PRL) secretion: Evidence for a sleep-independent circadian rhythm of circulating PRL levels-A clinical research center study. J Clin Endocrinol Metab 1996; 81(4):1483–1487.

    PubMed  CAS  Google Scholar 

  65. Nokin J, Vekemans M, L’Hermite M, Robyn C. Circadian periodicity of serum prolactin concentration in man. Br Med J 1972; 3(826):561–562.

    PubMed  CAS  Google Scholar 

  66. Van Cauter E, L’Hermite M, Copinschi G, Refetoff S, Desir D, Robyn C. Quantitative analysis of spontaneous variations of plasma prolactin in normal man. Am J Physiol 1981; 241(5):E355–E363.

    PubMed  Google Scholar 

  67. Parker DC, Pekary AE, Hershman JM. Effect of normal and reversed sleep-wake cycles upon nyctohemeral rhythmicity of plasma thyrotropin: Evidence suggestive of an inhibitory influence in sleep. J Clin Endocrinol Metab 1976; 43:318–329.

    PubMed  CAS  Google Scholar 

  68. Brabant G, Prank K, Ranft U et al. Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J Clin Endocrinol Metab 1990; 70(2):403–409.

    PubMed  CAS  Google Scholar 

  69. Parker DC, Rossman LG, Pekary AE, Hershman JM. Effect of 64-hour sleep deprivation on the circadian waveform of thyrotropin (TSH): further evidence of sleep-related inhibition of TSH release. J Clin Endocrinol Metab 1987; 64(1):157–161.

    PubMed  CAS  Google Scholar 

  70. Hirschfeld U, Moreno-Reyes R, Akseki E et al. Progressive elevation of plasma thyrotropin during adaptation to simulated jet lag: effects of treatment with bright light or zolpidem. J Clin Endocrinol Metab 1996; 81(9):3270–3277.

    PubMed  CAS  Google Scholar 

  71. Brabant G, Prank K, Hoang-Vu C, Hesch RD, von zur M A. Hypothalamic regulation of pulsatile thyrotopin secretion. J Clin Endocrinol Metab 1991; 72(1):145–150.

    PubMed  CAS  Google Scholar 

  72. Frank SA, Roland DC, Sturis J et al. Effects of aging on glucose regulation during wakefulness and sleep. Am J Physiol 1995; 269(6 Pt 1):E1006–E1016.

    PubMed  CAS  Google Scholar 

  73. Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 1991; 88(3):934–942.

    PubMed  Google Scholar 

  74. Dallman MF, Strack AM, Akana SF et al. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol 1993; 14(4):303–347.

    PubMed  CAS  Google Scholar 

  75. Plat L, Byrne MM, Sturis J et al. Effects of morning cortisol elevation on insulin secretion and glucose regulation in humans. Am J Physiol 1996; 270(1 Pt 1):E36–E42.

    PubMed  CAS  Google Scholar 

  76. Plat L, Leproult R, L’Hermite-Baleriaux M et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning. J Clin Endocrinol Metab 1999; 84(9):3082–3092.

    PubMed  CAS  Google Scholar 

  77. Van Cauter E, Shapiro ET, Tillil H, Polonsky KS. Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. Am J Physiol 1992; 262(4 Pt 1):E467–E475.

    PubMed  Google Scholar 

  78. Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 1997; 18(5):716–738.

    PubMed  Google Scholar 

  79. Simon C, Gronfier C, Schlienger JL, Brandenberger G. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab 1998; 83(6):1893–1899.

    PubMed  CAS  Google Scholar 

  80. Bornstein SR, Licinio J, Tauchnitz R et al. Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. J Clin Endocrinol Metab 1998; 83(1):280–283.

    PubMed  CAS  Google Scholar 

  81. Licinio J, Mantzoros C, Negrao AB et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 1997; 3(5):575–579.

    PubMed  CAS  Google Scholar 

  82. Sinha MK, Ohannesian JP, Heiman ML et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 1996; 97(5):1344–1347.

    PubMed  CAS  Google Scholar 

  83. Laughlin GA, Yen SS. Hypoleptinemia in women athletes: absence of a diurnal rhythm with amenorrhea. J Clin Endocrinol Metab 1997; 82(1):318–321.

    PubMed  CAS  Google Scholar 

  84. Saad MF, Riad-Gabriel MG, Khan A et al. Diurnal and ultradian rhythmicity of plasma leptin: effects of gender and adiposity. J Clin Endocrinol Metab 1998; 83(2):453–459.

    PubMed  CAS  Google Scholar 

  85. Born J, Muth S, Fehm HL. The significance of sleep onset and slow wave sleep for nocturnal release of growth hormone (GH) and cortisol. Psychoneuroendocrinology 1988; 13(3):233–243.

    PubMed  CAS  Google Scholar 

  86. Honda Y, Takahashi K, Takahashi S et al. Growth hormone secretion during nocturnal sleep in normal subjects. J Clin Endocrinol Metab 1969; 29(1):20–29.

    PubMed  CAS  Google Scholar 

  87. Parker DC, Sassin JF, Mace JW, Gotlin RW, Rossman LG. Human growth hormone release during sleep: electroencephalographic correlation. J Clin Endocrinol Metab 1969; 29(6):871–874.

    PubMed  CAS  Google Scholar 

  88. Sassin JF, Parker DC, Mace JW, Gotlin RW, Johnson LC, Rossman LG. Human growth hormone release: relation to slow-wave sleep and sleep-walking cycles. Science 1969; 165(892):513–515.

    PubMed  CAS  Google Scholar 

  89. Jaffe CA, Turgeon DK, Friberg RD, Watkins PB, Barkan AL. Nocturnal augmentation of growth hormone (GH) secretion is preserved during repetitive bolus administration of GH-releasing hormone: potential involvement of endogenous somatostatin-a clinical research center study. J Clin Endocrinol Metab 1995; 80(11):3321–3326.

    PubMed  CAS  Google Scholar 

  90. Gronfier C, Luthringer R, Follenius M et al. A quantitative evaluation of the relationships between growth hormone secretion and delta wave electroencephalographic activity during normal sleep and after enrichment in delta waves. Sleep 1996; 19(10):817–824.

    PubMed  CAS  Google Scholar 

  91. Vaughan GM, Allen JP, Tullis W, Siler-Khodr TM, de la Pena A, Sackman JW. Overnight plasma profiles of melatonin and certain adenohypophyseal hormones in men. J Clin Endocrinol Metab 1978; 47(3):566–571.

    PubMed  CAS  Google Scholar 

  92. Beck U, Brezinova V, Hunter WM, Oswald I. Plasma growth hormone and slow wave sleep increase after interruption of sheep. J Clin Endocrinol Metab 1975; 40(5):812–815.

    PubMed  CAS  Google Scholar 

  93. Holl RW, Hartman ML, Veldhuis JD, Taylor WM, Thorner MO. Thirty-second sampling of plasma growth hormone in man: correlation with sleep stages. J Clin Endocrinol Metab 1991; 72(4):854–861.

    PubMed  CAS  Google Scholar 

  94. Steiger A, Herth T, Holsboer F. Sleep-electroencephalography and the secretion of cortisol and growth hormone in normal controls. Acta Endocrinol (Copenh) 1987; 116(1):36–42.

    PubMed  CAS  Google Scholar 

  95. Jarrett DB, Greenhouse JB, Miewald JM, Fedorka IB, Kupfer DJ. A reexamination of the relationship between growth hormone secretion and slow wave sleep using delta wave analysis. Biol Psychiatry 1990; 27(5):497–509.

    PubMed  CAS  Google Scholar 

  96. Van Cauter E, Caufriez A, Kerkhofs M, Van O A, Thorner MO, Copinschi G. Sleep, awakenings, and insulin-like growth factor-I modulate the growth hormone (GH) secretory response to GH-releasing hormone. J Clin Endocrinol Metab 1992; 74(6):1451–1459.

    PubMed  Google Scholar 

  97. Spath-Schwalbe E, Hundenborn C, Kern W, Fehm HL, Born J. Nocturnal wakefulness inhibits growth hormone (GH)-releasing hormone-induced GH secretion. J Clin Endocrinol Metab 1995; 80(1):214–219.

    PubMed  CAS  Google Scholar 

  98. Baumgartner A, Dietzel M, Saletu B et al. Influence of partial sleep deprivation on the secretion of thyrotropin, thyroid hormones, growth hormone, prolactin, luteinizing hormone, follicle stimulating hormone, and estradiol in healthy young women. Psychiatry Res 1993; 48(2):153–178.

    PubMed  CAS  Google Scholar 

  99. Van Cauter E, Plat L, Scharf MB et al. Simultaneous stimulation of slow-wave sleep and growth hormone secretion by gamma-hydroxybutyrate in normal young Men. J Clin Invest 1997; 100(3):745–753.

    PubMed  Google Scholar 

  100. Sassin JF, Frantz AG, Weitzman ED, Kapen S. Human prolactin: 24-hour pattern with increased release during sleep. Science 1972; 177(55):1205–1207.

    PubMed  CAS  Google Scholar 

  101. Spiegel K, Weibel L, Gronfier C, Brandenberger G, Follenius M. Twenty-four-hour prolactin profiles in night workers. Chronobiol Int 1996; 13(4):283–293.

    PubMed  CAS  Google Scholar 

  102. Sassin JF, Frantz AG, Kapen S, Weitzman ED. The nocturnal rise of human prolactin is dependent on sleep. J Clin Endocrinol Metab 1973; 37(3):436–440.

    PubMed  CAS  Google Scholar 

  103. Frantz AG. Prolactin. N Engl J Med 1978; 298(4):201–207.

    PubMed  CAS  Google Scholar 

  104. von Treuer K, Norman TR, Armstrong SM. Overnight human plasma melatonin, cortisol, prolactin, TSH, under conditions of normal sleep, sleep deprivation, and sleep recovery. J Pineal Res 1996; 20(1):7–14.

    Google Scholar 

  105. Goichot B, Brandenberger G, Saini J, Wittersheim G. Nocturnal plasma thyrotropin variations are related to slow-wave sleep. J Sleep Res 1992; 1(3):186–190.

    PubMed  Google Scholar 

  106. Gronfier C, Luthringer R, Follenius M et al. Temporal link between plasma thyrotropin levels and electroencephalographic activity in man. Neurosci Lett 1995; 200(2):97–100.

    PubMed  CAS  Google Scholar 

  107. Gary KA, Winokur A, Douglas SD, Kapoor S, Zaugg L, Dinges DF. Total sleep deprivation and the thyroid axis: effects of sleep and waking activity. Aviat Space Environ Med 1996; 67(6):513–519.

    PubMed  CAS  Google Scholar 

  108. Goichot B, Weibel L, Chapotot F, Gronfier C, Piquard F, Brandenberger G. Effect of the shift of the sleep-wake cycle on three robust endocrine markers of the circadian clock. Am J Physiol 1998; 275(2 Pt 1):E243–E248.

    PubMed  CAS  Google Scholar 

  109. Palmblad J, Akerstedt T, Froberg J, Melander A, von S H. Thyroid and adrenomedullary reactions during sleep deprivation. Acta Endocrinol (Copenh) 1979; 90(2):233–239.

    PubMed  CAS  Google Scholar 

  110. Kern W, Offenheuser S, Born J, Fehm HL. Entrainment of ultradian oscillations in the secretion of insulin and glucagon to the nonrapid eye movement/rapid eye movement sleep rhythm in humans. J Clin Endocrinol Metab 1996; 81(4):1541–1547.

    PubMed  CAS  Google Scholar 

  111. Schulz H, Brandenberger G, Gudewill S et al. Plasma renin activity and sleepwake structure of narcoleptic patients and control subjects under continuous bedrest. Sleep 1992; 15(5):423–429.

    PubMed  CAS  Google Scholar 

  112. Brandenberger G, Follenius M, Simon C, Ehrhart J, Libert JP. Nocturnal oscillations in plasma renin activity and REM-NREM sleep cycles in humans: a common regulatory mechanism? Sleep 1988; 11(3):242–250.

    PubMed  CAS  Google Scholar 

  113. Luthringer R, Brandenberger G, Schaltenbrand N et al. Slow wave electroencephalic activity parallels renin oscillations during sleep in humans. Electroencephalogr Clin Neurophysiol 1995; 95(5):318–322.

    PubMed  CAS  Google Scholar 

  114. Weitzman ED, Zimmerman JC, Czeisler CA, Ronda J. Cortisol secretion is inhibited during sleep in normal man. J Clin Endocrinol Metab 1983; 56(2):352–358.

    PubMed  CAS  Google Scholar 

  115. Spath-Schwalbe E, Uthgenannt D, Voget G, Kern W, Born J, Fehm HL. Corticotropin-releasing hormone-induced adrenocorticotropin and cortisol secretion depends on sleep and wakefulness. J Clin Endocrinol Metab 1993; 77(5):1170–1173.

    PubMed  CAS  Google Scholar 

  116. Bierwolf C, Struve K, Marshall L, Born J, Fehm HL. Slow wave sleep drives inhibition of pituitary-adrenal secretion in humans. J Neuroendocrinol 1997; 9(6):479–484.

    PubMed  CAS  Google Scholar 

  117. Salin-Pascual RJ, Ortega-Soto H, Huerto-Delgadillo L, Camacho-Arroyo I, Roldan-Roldan G, Tamarkin L. The effect of total sleep deprivation on plasma melatonin and cortisol in healthy human volunteers. Sleep 1988; 11(4):362–369.

    PubMed  CAS  Google Scholar 

  118. Davidson JR, Moldofsky H, Lue FA. Growth hormone and cortisol secretion in relation to sleep and wakefulness. J Psychiatry Neurosci 1991; 16(2):96–102.

    PubMed  CAS  Google Scholar 

  119. Leproult R, Copinschi G, Buxton O, Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 1997; 20(10):865–870.

    PubMed  CAS  Google Scholar 

  120. Spath-Schwalbe E, Gofferje M, Kern W, Born J, Fehm HL. Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol Psychiatry 1991; 29(6):575–584.

    PubMed  CAS  Google Scholar 

  121. Akerstedt T, Froberg JE, Friberg Y, Wetterberg L. Melatonin excretion, body temperature and subjective arousal during 64 hours of sleep deprivation. Psychoneuroendocrinology 1979; 4(3):219–225.

    PubMed  CAS  Google Scholar 

  122. Deacon SJ, Arendt J, English J. Posture: a possible masking factor of the melatonin circadian rhythm. In: Touitou Y, Arendt J, Pévet P, editors. Melatonin and the pineal gland-from basic science to clinical application. Elsevier Science, 1993:387–390.

    Google Scholar 

  123. Koller M, Harma M, Laitinen JT, Kundi M, Piegler B, Haider M. Different patterns of light exposure in relation to melatonin and cortisol rhythms and sleep of night shift workers. J Pineal Res 1994; 16:127–135.

    PubMed  CAS  Google Scholar 

  124. Czeisler CA, Johnson MP, Duffy JF, Brown EN, Ronda JM, Kronauer RE. Exposure to bright light and darkness to treat physiologic maladaptation to night work. N Engl J Med 1990; 322(18):1253–1259.

    PubMed  CAS  Google Scholar 

  125. Martin SK, Eastman CI. Medium-intensity light produces circadian rhythm adaptation to simulated night-shift work. Sleep 1998; 21(2):154–165.

    PubMed  CAS  Google Scholar 

  126. Dawson D, Lack L, Morris M. Phase resetting of the human circadian pacemaker with use of a single pulse of bright light. Chronobiol Int 1993; 10(2): 94–102.

    PubMed  CAS  Google Scholar 

  127. Horowitz TS, Cade BE, Wolfe JM, Czeisler CA. Efficacy of bright light and sleep/darkness scheduling in alleviating circadian maladaptation to night work. Am J Physiol Endocrinol Metab 2001; 281(2):E384–E391.

    PubMed  CAS  Google Scholar 

  128. Crowley SJ, Lee C, Tseng CY, Fogg LF, Eastman CI. Combinations of bright light, scheduled dark, sunglasses, and melatonin to facilitate circadian entrainment to night shift work. J Biol Rhythms 2003; 18(6):513–523.

    PubMed  Google Scholar 

  129. Gibbs M, Hampton S, Morgan L, Arendt J. Adaptation of the circadian rhythm of 6-sulphatoxymelatonin to a shift schedule of seven nights followed by seven days in offshore oil installation workers. Neurosci Lett 2002; 325(2):91–94.

    PubMed  CAS  Google Scholar 

  130. Stewart KT, Hayes BC, Eastman CI. Light treatment for NASA shiftworkers. Chronobiol Int 1995; 12(2):141–151.

    PubMed  CAS  Google Scholar 

  131. Boivin DB, James FO. Circadian adaptation to night shift work by judicious light and darkness exposure. J Biol Rhythms 2002; 17(6):556–567.

    PubMed  Google Scholar 

  132. Takahashi Y, Kipnis DM, Daughaday WH. Growth hormone secretion during sleep. J Clin Invest 1968; 47(9):2079–2090.

    PubMed  CAS  Google Scholar 

  133. Golstein J, Van Cauter E., Désir D et al. Effects of “jet lag” on hormonal patterns. IV. Time shifts increase growth hormone release. J Clin Endocrinol Metab 1983; 56(3):433–440.

    PubMed  CAS  Google Scholar 

  134. Désir D, Van Cauter E., L’Hermite M et al. Effects of “jet lag” on hormonal patterns. III. Demonstration of an intrinsic circadian rhythmicity in plasma prolactin. J Clin Endocrinol Metab 1982; 55(5):849–857.

    PubMed  Google Scholar 

  135. Leese G, Chattington P, Fraser W, Vora J, Edwards R, Williams G. Short-term night-shift working mimics the pituitary-adrenocortical dysfunction in chronic fatigue syndrome. J Clin Endocrinol Metab 1996; 81(5):1867–1870.

    PubMed  CAS  Google Scholar 

  136. Quera-Salva MA, Defrance R, Claustrat B, De Lattre J, Guilleminault C. Rapid shift in sleep time and acrophase of melatonin secretion in short shift work schedule. Sleep 1996; 19(7):539–543.

    PubMed  CAS  Google Scholar 

  137. Hennig J, Kieferdorf P, Moritz C, Huwe S, Netter P. Changes in cortisol secretion during shiftwork: implications for tolerance to shiftwork? Ergonomics 1998; 41(5):610–621.

    PubMed  CAS  Google Scholar 

  138. Axelsson J, Akerstedt T, Kecklund G, Lindqvist A, Attefors R. Hormonal changes in satisfied and dissatisfied shift workers across a shift cycle. J Appl Physiol 2003; 95(5):2099–2105.

    PubMed  Google Scholar 

  139. Chatterton RT, Jr., Dooley SL. Reversal of diurnal cortisol rhythm and suppression of plasma testosterone in obstetric residents on call. J Soc Gynecol Investig 1999; 6(1):50–54.

    PubMed  Google Scholar 

  140. James FO, Walker CD, Boivin DB. Controlled exposure to light and darkness realigns the salivary cortisol rhythm in night shift workers. Chronobiol Int 2004; in press.

    Google Scholar 

  141. Touitou Y, Motohashi Y, Reinberg A et al. Effect of shift work on the night-time secretory patterns of melatonin, prolactin, cortisol and testosterone. Eur J Appl Physiol Occup Physiol 1990; 60(4):288–292.

    PubMed  CAS  Google Scholar 

  142. Goh VH, Tong TY, Lim CL, Low EC, Lee LK. Effects of one night of sleep deprivation on hormone profiles and performance efficiency. Mil Med 2001; 166(5):427–431.

    PubMed  CAS  Google Scholar 

  143. Désir D, Van Cauter E., Fang VS et al. Effects of “jet lag” on hormonal patterns. I. Procedures, variations in total plasma proteins, and disruption of adrenocorticotropin-cortisol periodicity. J Clin Endocrinol Metab 1981; 52(4): 628–641.

    PubMed  Google Scholar 

  144. Weibel L, Brandenberger G. The start of the quiescent period of cortisol remains phase locked to the melatonin onset despite circadian phase alterations in humans working the night schedule. Neurosci Lett 2002; 318(2):89–92.

    PubMed  CAS  Google Scholar 

  145. Whitson PA, Putcha L, Chen Y-M, Baker E. Melatonin and cortisol assessment of circadian shifts in astronauts before flight. J Pineal Res 1995; 18(3): 141–147.

    PubMed  CAS  Google Scholar 

  146. Budnick LD, Lerman SE, Nicolich MJ. An evaluation of scheduled bright light and darkness on rotating shiftworkers: trial and limitations. Am J Int Med 1995; 27(6):771–782.

    CAS  Google Scholar 

  147. Barnes RG, Forbes MJ, Arendt J. Shift type and season affect adaptation of the 6-sulphatoxymelatonin rhythm in offshore oil rig workers. Neurosci Lett 1998; 252(3):179–182.

    PubMed  CAS  Google Scholar 

  148. Dawson D, Encel N, Lushington K. Improving adaptation to simulated night shift: timed exposure to bright light versus daytime melatonin administration. Sleep 1995; 18(1):11–21.

    PubMed  CAS  Google Scholar 

  149. Dumont M, Benhaberou-Brun D, Paquet J. Profile of 24-h light exposure and circadian phase of melatonin secretion in nightworkers. J Biol Rhythms 2001; 16(5):502–511.

    PubMed  CAS  Google Scholar 

  150. Reinberg A, Vieux N, Ghata J, Chaumont AJ, LaPorte A. Is the rhythm amplitude related to the ability to phase-shift circadian rhythms of shift-workers? J Physiol (Paris) 1978; 74(4):405–409.

    CAS  Google Scholar 

  151. Weibel L, Brandenberger G, Goichot B, Spiegel K, Ehrhart J, Follenius M. The circadian thyrotropin rhythm is delayed in regular night workers. Neurosci Lett 1995; 187(2):83–86.

    PubMed  CAS  Google Scholar 

  152. Scheen AJ, Byrne MM, Plat L, Leproult R, Van Cauter E. Relationships between sleep quality and glucose regulation in normal humans. Am J Physiol 1996; 271(2 Pt 1):E261–E270.

    PubMed  CAS  Google Scholar 

  153. Lund J, Arendt J, Hampton SM, English J, Morgan LM. Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J Endocrinol 2001; 171(3):557–564.

    PubMed  CAS  Google Scholar 

  154. Morgan L, Arendt J, Owens D et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. J Endocrinol 1998; 157(3):443–451.

    PubMed  CAS  Google Scholar 

  155. Ribeiro DC, Hampton SM, Morgan L, Deacon S, Arendt J. Altered postprandial hormone and metabolic responses in a simulated shift work environment. J Endocrinol 1998; 158(3):305–310.

    PubMed  CAS  Google Scholar 

  156. Hampton SM, Morgan LM, Lawrence N et al. Postprandial hormone and metabolic responses in simulated shift work. J Endocrinol 1996; 151(2):259–267.

    PubMed  CAS  Google Scholar 

  157. Schoeller DA, Celle LK, Sinha MK, Caro JF. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest 1997; 100(7):1882–1887.

    PubMed  CAS  Google Scholar 

  158. Romon M, Nuttens MC, Fievet C et al. Increased triglyceride levels in shift workers. Am J Med 1992; 93(3):259–262.

    PubMed  CAS  Google Scholar 

  159. Theorell T, Akerstedt T. Day and night work: changes in cholesterol, uric acid, glucose and potassium in serum and in circadian patterns of urinary catecholamine excretion. A longitudinal cross-over study of railway workers. Acta Med Scand 1976; 200(1–2):47–53.

    PubMed  CAS  Google Scholar 

  160. Nagaya T, Yoshida H, Takahashi H, Kawai M. Markers of insulin resistance in day and shift workers aged 30–59 years. Int Arch Occup Environ Health 2002; 75(8):562–568.

    PubMed  CAS  Google Scholar 

  161. Knutsson A, Hallquist J, Reuterwall C, Theorell T, Akerstedt T. Shiftwork and myocardial infarction: a case-control study. Occup Environ Med 1999; 56(1):46–50.

    PubMed  CAS  Google Scholar 

  162. Nakamura K, Shimai S, Kikuchi S et al. Shift work and risk factors for coronary heart disease in Japanese blue-collar workers: serum lipids and anthropometric characteristics. Occup Med (Lond) 997; 47(3):142–146.

    Google Scholar 

  163. Harrington JM. Shift work and health-a critical review of the literature on working hours. Ann Acad Med Singapore 1994; 23(5):699–705.

    PubMed  CAS  Google Scholar 

  164. Romon M, Bertin Lebrette C. Travail posté et alimentation. Cahiers de Nutrition et de Diétetique 1998; 33(6):390–394.

    Google Scholar 

  165. Nurminen T. Shift work and reproductive health. Scandinavian Journal of Work, Environment & Health 1998; 24(Suppl 3):28–34.

    Google Scholar 

  166. Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology 2001; 12(1):74–77.

    PubMed  CAS  Google Scholar 

  167. Koller M, Kundi M, Cervinka R. Field studies of shift work at an Austrian oil refinery. I: health and psychosocial wellbeing of workers who drop out of shiftwork. Ergonomics 1978; 21(10):835–847.

    PubMed  CAS  Google Scholar 

  168. Koller M. Health risks related to shift work. An example of time-contingent effects of long-term stress. Int Arch Occup Environ Health 1983; 53(1):59–75.

    PubMed  CAS  Google Scholar 

  169. Hanecke K, Tiedemann S, Nachreiner F, Grzech-Sukalo H. Accident risk as a function of hour at work and time of day as determined from accident data and exposure models for the German working population. Scand J Work Environ Health 1998; 24(Suppl 3):43–48.

    PubMed  Google Scholar 

  170. Akerstedt T. Sleepiness as a consequence of shift work. Sleep 1988; 11(1):17–34.

    PubMed  CAS  Google Scholar 

  171. Fathallah FA, Brogmus GE. Hourly trends in workers’ compensation claims. Ergonomics 1999; 42(1):196–207.

    Google Scholar 

  172. Hamelin P. Lorry driver’s time habits in work and their involvement in traffic accidents. Ergonomics 1987; 30(9):1323–1333.

    PubMed  CAS  Google Scholar 

  173. Dumont M, Montplaisir J, Infante-Rivard C. Sleep quality of former night-shift workers. Int J Occup Environ Health 1997; 3(Supplement 2):S10–S14.

    PubMed  Google Scholar 

  174. Niedhammer I, Lert F, Marne MJ. Effects of shift work on sleep among French nurses. A longitudinal study. J Occup Med 1994; 36(6):667–674.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Boivin, D.B. (2006). Disturbances of Hormonal Circadian Rhythms in Shift Workers. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_17

Download citation

Publish with us

Policies and ethics