Skip to main content

Novel Insights Into Protein Structure and Dynamics Utilizing the Red Edge Excitation Shift Approach

  • Chapter
Book cover Reviews in Fluorescence 2005

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2005))

Abstract

A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a corresponding shift in the excitation wavelength toward the red edge of the absorption band, is termed the red edge excitation shift (REES). This effect is mostly observed with polar fluorophores in motionally restricted media such as viscous solutions or condensed phases where the dipolar relaxation time for the solvent shell around a fluorophore is comparable to or longer than its fluorescence lifetime. REES arises from slow rates of solvent relaxation (reorientation) around an excited state fluorophore which depends on the motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. Utilizing this approach, it becomes possible to probe the mobility parameters of the environment itself (which is represented by the relaxing solvent molecules) using the fluorophore merely as a reporter group. Further, since the ubiquitous solvent for biological systems is water, the information obtained in such cases will come from the otherwise ‘optically silent’ water molecules. This makes REES extremely useful since hydration plays a crucial modulatory role in the formation and maintenance of organized molecular assemblies such as folded proteins in aqueous solutions and biological membranes. The application of REES as a powerful tool to monitor the organization and dynamics of a variety of soluble, cytoskeletal, and membrane-bound proteins is discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.7. References

  1. R. Pethig, Dielectric studies of protein hydration, in: Protein-Solvent Interactions, edited by R. B. Gregory (Marcel Dekker, New York, 1995) pp. 265–288.

    Google Scholar 

  2. M. M. Teeter, Water-protein interactions: theory and experiment, Annu. Rev. Biophys. Biophys. Chem. 20, 577–600 (1991).

    PubMed  CAS  Google Scholar 

  3. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Park, Slaving: solvent fluctuations dominate protein dynamics and function, Proc. Natl. Acad. Sci. U.S.A. 99, 16047–16051 (2002).

    PubMed  CAS  Google Scholar 

  4. K. Ogata, and S. J. Wodak, Conserved water molecules in MHC class-I molecules and their putative structural and functional roles, Protein Eng. 15, 697–705 (2002).

    PubMed  CAS  Google Scholar 

  5. M. Fasano, M. Orsale, S. Melino, E. Nicolai, F. Forlani, N. Rosato, D. Cicero, S. Pagani, and M. Paci. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study, Biochemistry 42, 8550–8557 (2003).

    PubMed  CAS  Google Scholar 

  6. L. A. Munishkina, J. Henriques, V. N. Uversky, and A. L. Fink, Role of protein-water interactions and electrostatics in α-synuclein fibril formation, Biochemistry 43, 3289–3300 (2004).

    PubMed  CAS  Google Scholar 

  7. Y. Levy, and J. N. Onuchic, Water and proteins: a love-hate relationship, Proc. Natl. Acad. Sci. U.S.A. 101, 3325–3326 (2004).

    PubMed  CAS  Google Scholar 

  8. S. K. Pal, J. Peon, and A. H. Zewail, Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution, Proc. Natl. Acad. Sci. U.S.A. 99, 1763–1768 (2002).

    PubMed  CAS  Google Scholar 

  9. S. N. Timasheff, Protein hydration, thermodynamic binding, and preferential hydration, Biochemistry 41, 13473–13482 (2002).

    PubMed  CAS  Google Scholar 

  10. S. Melchionna, G. Briganti, P. Londei, and P. Cammarano, Water induced effects on the thermal response of a protein, Phys. Rev. Lett. 92, 158101 (2004).

    PubMed  Google Scholar 

  11. F. Xu, and T. A. Cross, Water: foldase activity in catalyzing polypeptide conformational rearrangements, Proc. Natl Acad. Sci. U.S.A. 96, 9057–9061 (1999).

    PubMed  CAS  Google Scholar 

  12. C. Mattos, Protein-water interactions in a dynamic world, Trends Biochem. Sci. 27, 203–208 (2002).

    PubMed  CAS  Google Scholar 

  13. A. R. Bizzarri, and S. Cannistraro, Molecular dynamics of water at the protein-solvent interface, J. Phys. Chem. B 106, 6617–6633 (2002).

    CAS  Google Scholar 

  14. G. P. Singh, F. Parak, S. Hunklinger, and K. Dransfeld, Role of adsorbed water in the dynamics of metmyoglobin, Phys. Rev. Lett. 47, 685–688 (1981).

    CAS  Google Scholar 

  15. S. H. Koenig, K. Hallenga, and M. Shporer, Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation, Proc. Natl. Acad. Sci. U.S.A. 72, 2667–2671 (1975).

    PubMed  CAS  Google Scholar 

  16. C. Mattos, and D. Ringe, Proteins in organic solvents, Curr. Opin. Struct. Biol. 11, 761–764 (2001).

    PubMed  CAS  Google Scholar 

  17. G. Careri, Collective effects in hydrated proteins, in: Hydration Processes in Biology: Theoretical and Experimental Approaches, edited by M. C. Bellisent-Funel, (IOS Press, Amsterdam, 1999) pp. 143–155.

    Google Scholar 

  18. C. Ho, and C. D. Stubbs, Hydration at the membrane protein-lipid interface, Biophys. J. 63, 897–902 (1992).

    PubMed  CAS  Google Scholar 

  19. L. Essen, R. Siegert, W. D. Lehmann, and D. Oesterhelt, Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex, Proc. Natl. Acad. Sci. U.S.A. 95, 11673–11678 (1998).

    PubMed  CAS  Google Scholar 

  20. K. E. McAuley, P. K. Fyfe, J. P. Ridge, N. W. Isaacs, R. J. Cogdell, and M. R. Jones, Structural details of an interaction between cardiolipin and an integral membrane protein, Proc. Natl. Acad. Sci. U.S.A. 96, 14706–14711 (1999).

    PubMed  CAS  Google Scholar 

  21. R. Sankararamakrishnan, and M. S. P. Sansom, Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: a molecular dynamics study, FEBS Lett. 377, 377–382 (1995).

    PubMed  CAS  Google Scholar 

  22. T. Okada, Y. Fujiyoshi, M. Silow, J. Navarro, E. M. Landau, and Y. Shichida, Function role of internal water molecules in rhodopsin revealed by x-ray crystallography, Proc. Natl. Acad. Sci. U.S.A. 99, 5982–5987 (2002).

    PubMed  CAS  Google Scholar 

  23. T. Kouyama, T. Nishikawa, T. Tokuhisa, and H. Okumura, Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle, J. Mol. Biol. 335, 531–546 (2004).

    PubMed  CAS  Google Scholar 

  24. M. B. Jackson, Advances in ion channel structure, Trends Neurosci. 24, 291 (2004).

    Google Scholar 

  25. P. M. Hwang, R. E. Bishop, and L. E. Kay, The integral membrane enzyme PagP alternates between two dynamically distinct states, Proc. Natl. Acad. Sci. U.S.A. 101, 9618–9623 (2004).

    PubMed  CAS  Google Scholar 

  26. J. Torres, T. J. Stevens, and M. Samsó, Membrane proteins: the ‘wild west’ of structural biology. Trends Biochem. Sci. 28, 137–144 (2003).

    PubMed  CAS  Google Scholar 

  27. S. H. White, The progress of membrane protein structure determination, Protein Sci. 13, 1948–1949 (2004).

    PubMed  CAS  Google Scholar 

  28. J. U. Bowie, Stabilizing membrane proteins, Curr. Opin. Struct. Biol. 11, 397–402 (2001).

    PubMed  CAS  Google Scholar 

  29. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat. H. Weissig, I. N. Shindyalov, and P. E. Bourne, The protein data bank, Nucleic Acids Res. 28, 235–242 (2000).

    PubMed  CAS  Google Scholar 

  30. P. C. Preusch, J. C. Norvell, J. C. Cassatt, and M. Cassman, Progress away from ‘no crystals, no grant’, Nat. Struct. Biol. 5, 12–14 (1998).

    PubMed  CAS  Google Scholar 

  31. P. L. Yeagle, and A. G. Lee, Membrane protein structure, Biochim. Biophys. Acta 1565, 143 (2002).

    PubMed  CAS  Google Scholar 

  32. M. R. Eftink, Fluorescence techniques for studying protein structure, in: Methods of Biochemical Analysis, Vol. 35, edited by C. H. Suelter (John Wiley, New York, 1991), pp. 127–205.

    Google Scholar 

  33. A. Chattopadhyay, and H. Raghuraman, Application of fluorescence spectroscopy to membrane protein structure and dynamics, Curr. Sci. 87, 175–180 (2004).

    CAS  Google Scholar 

  34. A. P. Demchenko, Site-selective excitation: a new dimension in protein and membrane spectroscopy, Trends Biochem. Sci. 13, 374–377 (1988).

    PubMed  CAS  Google Scholar 

  35. S. Mukherjee, and A. Chattopadhyay, Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems, J. Fluoresc. 5, 237–246 (1995).

    CAS  Google Scholar 

  36. A. Chattopadhyay, Application of the wavelength-selective fluorescence approach to monitor membrane organization and dynamics, in: Fluorescence Spectroscopy, Imaging and Probes, edited by R. Kraayenhof, A. J. W. G. Visser, and H. C. Gerritsen (Springer-Verlag, Heidelberg, 2002) pp. 211–224.

    Google Scholar 

  37. A. P. Demchenko, The red-edge effects: 30 years of exploration, Luminescence 17, 19–42 (2002).

    PubMed  CAS  Google Scholar 

  38. A. Chattopadhyay, 2003, Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach, Chem. Phys. Lipids 122, 3–17 (2003).

    PubMed  CAS  Google Scholar 

  39. H. Raghuraman, D. A. Kelkar, and A. Chattopadhyay, Novel insights into membrane protein structure and dynamics utilizing the wavelength-selective fluorescence approach, Proc. Ind. Natl. Sci. Acad. A 69, 25–35 (2003).

    Google Scholar 

  40. P. Mentré, (Ed.), Water in the cell, Cell. Mol. Biol. 47, 709–970 (2001).

    Google Scholar 

  41. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970).

    Google Scholar 

  42. K. K. Rohatgi-Mukherjee, Fundamentals of Photochemistry (Wiley Eastern, New Delhi, 1978).

    Google Scholar 

  43. A. P. Demchenko, and A. I. Sytnik, Solvent reorganizational red-edge effect in intramolecular electron transfer, Proc. Natl. Acad. Sci. U.S.A. 88, 9311–9314 (1991).

    PubMed  CAS  Google Scholar 

  44. A. P. Demchenko, A new generation of fluorescence probes exhibiting charge-transfer reactions, Proc. SPlEInt. Soc. Opt. Eng. 2137, 588–599 (1994).

    CAS  Google Scholar 

  45. B. Valeur, Molecular Fluorescence: Principles and Applications, (Wiley-VCH, Weinheim, 2002) pp. 63–65.

    Google Scholar 

  46. D. W. Pierce, and S. G. Boxer, Stark effect spectroscopy of tryptophan, Biophys. J. 68, 1583–1591 (1995).

    PubMed  CAS  Google Scholar 

  47. P. R. Callis, 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins, Methods Enzymol. 278, 113–150 (1997).

    PubMed  CAS  Google Scholar 

  48. G. Weber, Fluorescence-polarization spectrum and electronic-energy transfer in proteins, Biochem. J. 75, 345–352 (1960).

    PubMed  CAS  Google Scholar 

  49. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer-Plenum, New York, 1999).

    Google Scholar 

  50. K. Ruan, J. Li, R. Liang, C. Xu, Y. Yu, R. Lange, and C. Balny, A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II, Biochem. Biophys. Res. Commun. 293, 593–597 (2002).

    PubMed  CAS  Google Scholar 

  51. J. B. A. Ross, W. R. Laws, K. W. Rousslang, and H. R. Wyssbrod, Tyrosine fluorescence and phosphorescence from proteins and polypeptides, in: Topics in Fluorescence Spectroscopy, Vol. 3, Biochemical Applications, edited by J. R. Lakowicz (Plenum Press, New York, 1992), pp. 1–63.

    Google Scholar 

  52. A. S. Ladokhin, Fluorescence spectroscopy in peptide and protein analysis, in: Encyclopedia of Analytical Chemistry, edited by R. A. Meyers (John Wiley, New York, 2000) pp. 5762–5779.

    Google Scholar 

  53. E. P. Kirby, and R. F. Steiner, Influence of solvent and temperature upon the fluorescence of indole derivatives, J. Phys. Chem. 74, 4480–4490 (1970).

    CAS  Google Scholar 

  54. J. M. Beechem, and L. Brand, Time-resolved fluorescence of proteins, Annu. Rev. Biochem. 54, 43–71 (1985).

    PubMed  CAS  Google Scholar 

  55. J. T. Vivian, and P. R. Callis, Mechanisms of tryptophan fluorescence shifts in proteins, Biophys. J. 80, 2093–2109 (2001).

    PubMed  CAS  Google Scholar 

  56. A. J. Ruggiero, D. C. Todd, and G. R. Fleming, Subpicosecond fluorescence anisotropy studies of tryptophan in water, J. Am. Chem. Soc. 112, 1003–1014 (1990).

    CAS  Google Scholar 

  57. C. Chothia, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 105, 1–14 (1976).

    PubMed  CAS  Google Scholar 

  58. S. K. Burley and G. A. Petsko, Aromatic-aromatic interaction: a mechanism of protein structure stabilization, Science 229, 23–28 (1985).

    PubMed  CAS  Google Scholar 

  59. S. K. Burley and G. A. Petsko, Weakly polar interactions in proteins, Adv. Protein Chem. 39, 125–189 (1988).

    PubMed  CAS  Google Scholar 

  60. V. Fonseca, P. Daumas, L. Ranjalahy-Rasoloarijao, F. Heitz, R. Lazaro, Y. Trudelle, and O. S. Andersen, Gramicidin channels that have no tryptophan residues, Biochemistry 31, 5340–5350 (1992).

    PubMed  CAS  Google Scholar 

  61. W. C. Wimley, and S. H. White, Experimentally determined hydrophobicity scale for proteins at membrane interfaces, Nat. Struct. Biol. 3, 842–848 (1996).

    PubMed  CAS  Google Scholar 

  62. A. Chattopadhyay, S. Mukherjee, R. Rukmini, S. S. Rawat, and S. Sudha, Ionization, partitioning, and dynamics of tryptophan octyl ester: implications for membrane-bound tryptophan residues, Biophys. J. 73, 839–849 (1997).

    PubMed  CAS  Google Scholar 

  63. T. Nagy, P. Simpson, M. P. Williamson, G. P. Hazlewood, H. J. Gilbert, and L. Orosz, All three surface tryptophans in type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands, FEBS Lett. 429, 312–316 (1998).

    PubMed  CAS  Google Scholar 

  64. O. K. Gasymov, A. R. Abduragimov, T. N. Yusifov, and B. J. Glasgow, Binding studies of tear lipocalin: the role of the conserved tryptophan in maintaining structure, stability and ligand affinity, Biochim. Biophys. Acta 1433, 307–320 (1999).

    PubMed  CAS  Google Scholar 

  65. A.-X. Song, L.-Z. Li, T. Yu, S.-M. Chen, and Z.-X. Huang, Role of tryptophan 121 in the soluble CuA domain of cytochrome c oxidase: structure and electron transfer studies, Protein Eng. 16, 435–441 (2003).

    PubMed  CAS  Google Scholar 

  66. M. D. Becker, D. V. Greathouse, R. E. Koeppe, and O. S. Andersen, Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration, Biochemistry 30, 8830–8839 (1991).

    PubMed  CAS  Google Scholar 

  67. J. Kolena, S. Scsukova, M. Tatara, J. Vranova, and M. Jezova, Involvement of tryptophan in the structural alteration of the rat ovarian LH/hCG receptor, Exp. Clin. Endocrinol. Diabetes 105, 304–307 (1997).

    PubMed  CAS  Google Scholar 

  68. E. H. Clark, J. M. East, and A. G. Lee, The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase, Biochemistry 42, 11065–11073 (2003).

    PubMed  CAS  Google Scholar 

  69. A. S. Miller, and J. J. Falke, Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor, Biochemistry 43, 1763–1770 (2004).

    PubMed  CAS  Google Scholar 

  70. H.-S. Won, S.-H. Park, H. E. Kim, B. Hyun, M. Kim, B. J. Lee, and B.-J. Lee, Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4, Eur. J. Biochem. 269, 4367–4374 (2002).

    PubMed  CAS  Google Scholar 

  71. Y. Tang, F. Zaitseva, R. A. Lamb, and L. H. Pinto, The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue, J. Biol. Chem. 277, 39880–39886 (2002).

    PubMed  CAS  Google Scholar 

  72. Q. Hong, 1. Gutiérrez-Aguirres, A. Barlic, P. Malovrh, K. Kristan, Z. Podlesek, P. Macek, D. Turk, J. M. González-Mañas, J. H. Lakey, and G. Anderluh, Two-step binding by equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible loop, J. Biol. Chem. 277, 41916–41924 (2002).

    PubMed  CAS  Google Scholar 

  73. A. P. Demchenko. Dependence of human serum albumin fluorescence spectrum on excitation wavelength, Ukr. Biochim. Zh. 53, 22–27 (1981).

    CAS  Google Scholar 

  74. A. P. Demchenko, On the nanosecond mobility in proteins. Edge excitation fluorescence red shift of protein-bound 2-(p-toluidinylnaphthalene)-6-sulfonate, Biophys. Chem. 15, 101–109 (1982).

    PubMed  CAS  Google Scholar 

  75. A. P. Demchenko, Red-edge-excitation fluorescence spectroscopy of single-tryptophan proteins, Eur. Biophys. J. 16, 121–129 (1988).

    PubMed  CAS  Google Scholar 

  76. P. Pattanaik, G. Ravindra, C. Sengupta, K. Maithal, P. Balaram, and H. Balaram, Unusual fluorescence of W168 in Plasmodium falciparum triosephosphate isomerase, probed by single-tryptophan mutants, Eur. J. Biochem. 270, 745–756 (2003).

    PubMed  CAS  Google Scholar 

  77. S. Guha, S. S. Rawat, A. Chattopadhyay, and B. Bhattacharyya, Tubulin conformation and dynamics: a red edge excitation shift study, Biochemistry 35, 13426–13433 (1996).

    PubMed  CAS  Google Scholar 

  78. A. P. Demchenko, and A. S. Ladokhin, Temperature-dependent shift of fluorescence spectra without conformational changes in protein; studies of dipole relaxation in the melittin molecule, Biochim. Biophys. Ada 955, 352–360 (1988).

    CAS  Google Scholar 

  79. S. K. Patra, and M. K. Pal, Red edge excitation shift emission spectroscopic investigation of serum albumins and serum albumin-bilirubin complexes, Spectrochim. Acta A 53, 1609–1614 (1997).

    Google Scholar 

  80. M. Ghose, S. Mandal, D. Roy, R. K. Mandal, and G. Basu, Dielectric relaxation in a single tryptophan protein, FEBS Lett. 509, 337–340 (2001).

    PubMed  CAS  Google Scholar 

  81. J. R. Albani, Correlation between dynamics, structure and spectral properties of human α 1-acid glycoprotein (orosomucoid): a fluorescence approach, Spectrochim. Acta A 54, 175–183 (1998).

    Google Scholar 

  82. A. H. C. de Oliveira, J. R. Giglio, S. H. Andrião-Escarso, and R. J. Ward, The effect of resonance energy homotransfer on the intrinsic tryptophan fluorescence emission of the bothropstoxin-1 dimer, Biochem. Biophys. Res. Commun. 284, 1011–1015 (2001).

    PubMed  Google Scholar 

  83. A. Di Venere, G. Mei, G. Gilardi, N. Rosato, F. De Matteis, R. McKay, E. Gratton, and A. Finazzi Agrò, Resolution of the heterogeneous fluorescence in multi-tryptophan proteins: ascorbate oxidase, Eur. J. Biochem. 257, 337–343 (1998).

    PubMed  Google Scholar 

  84. M. Chabbert, E. Piémont, F. G. Prendergast, and H. Lami, Fluorescence of a tryptophan bearing peptide from smooth muscle myosin light chain kinase upon binding to two closely related calmodulins, Arch. Biochem. Biophys. 322, 429–436 (1995).

    PubMed  CAS  Google Scholar 

  85. Y.-C. Chang, and R. D. Ludescher, Tryptophan photophysics in rabbit skeletal myosin rod, Biophys. Chem. 49, 113–126 (1994).

    PubMed  CAS  Google Scholar 

  86. D. M. Gakamsky, E. Haas, P. Robbins, J. L. Strominger, and I. Pecht, Selective steady-state and time-resolved fluorescence spectroscopy of an HLA-A2-peptide complex, Immunol. Lett. 44, 195–201 (1995).

    PubMed  CAS  Google Scholar 

  87. S. M. Raja, S. S. Rawat, A. Chattopadhyay, and A. K. Lala, Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus, Biophys. J. 76, 1469–1479 (1999).

    PubMed  CAS  Google Scholar 

  88. A. Chattopadhyay, S. S. Rawat, D. A. Kelkar, S. Ray, and A. Chakrabarti, Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach, Protein Sci. 12, 2389–2403 (2003).

    PubMed  CAS  Google Scholar 

  89. D. A. Kelkar, A. Chattopadhyay, A. Chakrabarti, and M. Bhattacharyya, Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach, (submitted for publication).

    Google Scholar 

  90. S. Ercelen, D. Kazan, A. Erarslan, and A. P. Demchenko, On the excited-state energy transfer between tryptophan residues in proteins: the case of penicillin acylase, Biophys. Chem. 90, 203–217 (2001).

    PubMed  CAS  Google Scholar 

  91. C. M. Rao, S. C. Rao, and P. B. Rao, Red edge excitation effect in intact eye lens, Photochem. Photobiol. 50, 399–402 (1989).

    PubMed  CAS  Google Scholar 

  92. S. C. Rao, and C. M. Rao, Red edge excitation shifts of crystallins and intact lenses. A study of segmental mobility and inter-protein interactions, FEBS Lett. 337, 269–273 (1994).

    PubMed  CAS  Google Scholar 

  93. L. Uma, Y. Sharma, and D. Balasubramanian, Conformation, stability and interactions of corneal keratan sulfate proteoglycan, Biochim. Biophys. Acta 1294, 8–14 (1996).

    PubMed  Google Scholar 

  94. L. Uma, D. Balasubramanian, and Y. Sharma, In situ fluorescence spectroscopic studies on bovine cornea, Photochem. Photobiol. 59, 557–561 (1994).

    PubMed  CAS  Google Scholar 

  95. J. Klein-Seetharaman, M. Oikawa, S. B. Grimshaw, J. Wirmer, E. Duchardt, T. Ueda, T. Imoto, L. J. Smith, C. M. Dobson, and H. Schwalbe, Long-range interactions within a nonnative protein, Science 295, 1719–1722 (2002).

    PubMed  CAS  Google Scholar 

  96. D. Neri, M. Billeter, G. Wider, and K. Wüthrich, NMR determination of residual structure in a urea-denatured protein, the 434-repressor, Science 257, 1559–1563 (1992).

    PubMed  CAS  Google Scholar 

  97. N. S. Bhavesh, S. C. Panchal, and R. V. Hosur, An efficient high-throughput resonance assignment procedure for structural genomics and protein folding research by NMR, Biochemistry 40, 14727–14735 (2001).

    PubMed  CAS  Google Scholar 

  98. R. A. Cone, Rotational diffusion of rhodopsin in the visual receptor membrane, Nat. New Biol. 236, 39–43 (1972).

    PubMed  CAS  Google Scholar 

  99. M. M. Poo, and R. A. Cone, Lateral diffusion of rhodopsin in the photoreceptor membrane, Nature 247, 438–441 (1974).

    PubMed  CAS  Google Scholar 

  100. M. Edidin, Lipids on the frontier: a century of cell-membrane bilayers, Nat. Rev. Mol. Cell Biol. 4, 414–418 (2003).

    PubMed  CAS  Google Scholar 

  101. J. Seelig, Deuterium magnetic resonance: theory and application to lipid membranes, Quart. Rev. Biophys. 10, 353–418 (1977).

    CAS  Google Scholar 

  102. R. G. Ashcroft, H. G. L. Coster, and J. R. Smith, The molecular organisation of bimolecular lipid membranes: The dielectric structure of the hydrophilic/hydrophobic interface, Biochim. Biophys. Acta 643, 191–204 (1981).

    PubMed  CAS  Google Scholar 

  103. E. Perochon, A. Lopez, and J. F. Tocanne, Polarity of lipid bilayers: a fluorescence investigation, Biochemistry 31, 7672–7282 (1992).

    PubMed  CAS  Google Scholar 

  104. R. M. Venable, Y. Zhang, B. J. Hardy, and R. W. Pastor, Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity, Science 262, 223–226 (1993).

    PubMed  CAS  Google Scholar 

  105. A. Chattopadhyay, and S. Mukherjee, Depth-dependent solvent relaxation in membranes: wavelength-selective fluorescence as a membrane dipstick, Langmuir 15, 2142–2148 (1999).

    CAS  Google Scholar 

  106. S. H. White, and W. C. Wimley, Peptides in lipid bilayers: structural and thermodynamic basis for partitioning and folding. Curr. Opin. Struct. Biol. 4, 79–86 (1994).

    CAS  Google Scholar 

  107. M. C. Wiener, and S. H. White, Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure, Biophys. J. 61, 434–447 (1992).

    PubMed  CAS  Google Scholar 

  108. P. L. Yeagle, in: The Membranes of Cells (Academic Press, Orlando, Florida, 1987), pp. 89–91.

    Google Scholar 

  109. J. M. Boggs, Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function, Biochim. Biophys. Acta 906, 353–404 (1987).

    PubMed  CAS  Google Scholar 

  110. R. B. Gennis, in: Biomembranes: Molecular Structure and Function (Springer-Verlag, New York. 1989), pp. 47–48.

    Google Scholar 

  111. T. B. Shin, R. Leventis, and J. R. Silvius, Partitioning of fluorescent phospholipid probes between different bilayer environments. Estimation of the free energy of interlipid hydrogen bonding, Biochemistry 30, 7491–7497 (1991).

    PubMed  CAS  Google Scholar 

  112. J. Sykora, P. Kapusta, V. Fidler, and M. Hof, On what time scale does solvent relaxation in phospholipid bilayers happen?, Langmuir 18, 571–574 (2002).

    CAS  Google Scholar 

  113. A. Chattopadhyay, and S. Mukherjee, Fluorophore environments in membrane-bound probes: a red edge excitation shift study, Biochemistry 32, 3804–3811 (1993).

    PubMed  CAS  Google Scholar 

  114. A. Chattopadhyay, and S. Mukherjee, Red edge excitation shift of a deeply embedded membrane probe: implications in water penetration in the bilayer, J. Phys. Chem. B 103, 8180–8185 (1999).

    CAS  Google Scholar 

  115. M. Hof, Solvent relaxation in biomembranes, in: Applied Fluorescence in Chemistry, Biology and Medicine, edited by W. Rettig, B. Strehmel, S. Schrader, and H. Seifert (Springer-Verlag, Heidelberg, 1999) pp. 439–456.

    Google Scholar 

  116. M. Schiffer, C. H. Chang, and F. J. Stevens, The functions of tryptophan residues in membrane proteins, Protein Eng. 5, 213–214 (1992).

    PubMed  CAS  Google Scholar 

  117. J. A. Ippolito, R. S. Alexander, D. W. Christianson, Hydrogen bond stereochemistry in protein structure and function, J. Mol. Biol. 215, 457–471 (1990).

    PubMed  CAS  Google Scholar 

  118. D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280, 69–77 (1998).

    PubMed  CAS  Google Scholar 

  119. H. Luecke, B. Schobert, H.-T. Richter, J.-P. Cartailler, and J. K. Lanyi, Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution, Science 286, 255–261 (1999).

    PubMed  CAS  Google Scholar 

  120. T. Schirmer, T. A. Keller, Y. F. Wang, and J. P. Rosenbusch, Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution, Science 267, 512–514 (1995).

    PubMed  CAS  Google Scholar 

  121. R. A. F. Reithmeier, Characterization and modeling of membrane proteins using sequence analysis, Curr. Opin. Struct. Biol. 5, 491–500 (1995).

    PubMed  CAS  Google Scholar 

  122. C. Landolt-Marticorena, K. A. Williams, C. M. Deber, and R. A. F. Reithmeier, Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins, J. Mol. Biol. 229, 602–608 (1993).

    PubMed  CAS  Google Scholar 

  123. M. B. Ulmschneider, and M. S. P. Sansom, Amino acid distributions in integral membrane protein structures, Biochim. Biophys. Acta 1512, 1–14 (2001).

    PubMed  CAS  Google Scholar 

  124. M. R. R. de Planque, D. V. Greathouse, R. E. Koeppe, H. Schafer, D. Marsh, and J. A. Killian, Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A, Biochemistry 37, 9333–9345 (1998).

    PubMed  Google Scholar 

  125. J. A. Demmers, E. van Duijn, J. Haverkamp, D. V. Greathouse, R. E. Koeppe, A. J. R. Heck, and J. A. Killian, Interfacial positioning and stability of transmembrane peptides in lipid bilayers studied by combining hydrogen/deuterium exchange and mass spectrometry, J. Biol. Chem. 276, 34501–34508 (2001).

    PubMed  CAS  Google Scholar 

  126. W.-M. Yau, W. C. Wimley, K. Gawrisch, and S. H. White, The preference of tryptophan for membrane interfaces, Biochemistry 37, 14713–14718 (1998).

    PubMed  CAS  Google Scholar 

  127. S. Persson, J. A. Killian, and G. Lindblom, Molecular ordering of interfacially localized tryptophan analogs in ester-and ether-Iipid bilayers studied by 2H-NMR, Biophys. J. 75, 1365–1371 (1998).

    PubMed  CAS  Google Scholar 

  128. R. E. Jacobs, and S. H. White, The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices, Biochemistry 28, 3421–3437 (1989).

    PubMed  CAS  Google Scholar 

  129. J. W. Brown, and W. H. Huestis, Structure and orientation of a bilayer-bound model tripeptide: a proton NMR study, J. Phys. Chem. 97, 2967–2973 (1993).

    CAS  Google Scholar 

  130. C. Chothia, Structural invariants in protein folding, Nature 254, 304–308 (1975).

    PubMed  CAS  Google Scholar 

  131. H. I. Petrache, S. E. Feller, and J. F. Nagle, Determination of component volumes of lipid bilayers from simulations, Biophys. J. 72, 2237–2242 (1997).

    PubMed  CAS  Google Scholar 

  132. O. S. Andersen, D. V. Greathouse, L. L. Providence, M. D. Becker, and R. E. Koeppe, Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin A channels, J. Am. Chem. Soc. 120, 5142–5146 (1998).

    CAS  Google Scholar 

  133. J. A. Lundbaek, A. M. Maer, and O. S. Andersen, Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels, Biochemistry 36, 5695–5701 (1997).

    PubMed  CAS  Google Scholar 

  134. R. J. Webb, J. M. East, R. P. Sharma, and A. G. Lee, Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi, Biochemistry 37, 673–679 (1998).

    PubMed  CAS  Google Scholar 

  135. M. R. R. de Planque, J. A. W. Kruijtzer, R. M. J. Liskamp, D. Marsh, D. V. Greathouse, R. E. Koeppe, B. de Kruijff, and J. A. Killian, Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides, J. Biol. Chem. 274, 20839–20846 (1999).

    PubMed  Google Scholar 

  136. J. Ren, S. Lew, J. Wang, and E. London, Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length, Biochemistry 38, 5905–5912 (1999).

    PubMed  CAS  Google Scholar 

  137. K. Hristova, C. E. Dempsey, and S. H. White, Structure, location, and lipid perturbations of melittin at the membrane interface, Biophys. J. 80, 801–811 (2001).

    PubMed  CAS  Google Scholar 

  138. A. N. Ridder, W. van de Hoef, J. Stam, A. Kuhn, B. de Kruijff, and J. A. Killian, Importance of hydrophobic matching for spontaneous insertion of a single-spanning membrane protein, Biochemistry 41, 4946–4952 (2002).

    PubMed  CAS  Google Scholar 

  139. R. F. M. de Almeida, L. M. S. Loura, M. Prieto, A. Watts, A. Fedorov, and F. J. Barrantes, Cholesterol modulates the organization of the γM4 transmembrane domain of the muscle nicotinic acetylcholine receptor, Biophys. J. 86, 2261–2272 (2004).

    PubMed  Google Scholar 

  140. A. S. Ladokhin, and P. W. Holloway, Fluorescence of membrane-bound tryptophan octyl ester: a model for studying intrinsic fluorescence of protein-membrane interactions, Biophys. J. 69, 506–517 (1995).

    PubMed  CAS  Google Scholar 

  141. B. de Foresta, J. Gallay, J. Sopkova, P. Champeil, and M. Vincent, Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs, Biophys. J. 77, 3071–3084 (1999).

    PubMed  Google Scholar 

  142. B. Sengupta, and P. K. Sengupta, Influence of reverse micellar environments on the fluorescence emission properties of tryptophan octyl ester, Biochem. Biophys. Res. Commun. 277, 13–19 (2000).

    PubMed  CAS  Google Scholar 

  143. C. F. Dempsey, The actions of melittin on membranes, Biochim. Biophys. Acta 1031, 143–161 (1990).

    PubMed  CAS  Google Scholar 

  144. Y. Shai, Molecular recognition between membrane-spanning polypeptides, Trends Biochem. Sci. 20, 460–464 (1995).

    PubMed  CAS  Google Scholar 

  145. G. Saberwal, and R. Nagaraj, Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlation and membrane-perturbing abilities, Biochim. Biophys. Acta 1197, 109–131 (1994).

    PubMed  CAS  Google Scholar 

  146. A. Chattopadhyay, and R. Rukmini, 1993, Restricted mobility of the sole tryptophan in membrane-bound melittin, FEBS Lett. 335, 341–344 (1993).

    PubMed  CAS  Google Scholar 

  147. A. K. Ghosh, R. Rukmini, and A. Chattopadhyay, Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function, Biochemistry 36, 14291–14305 (1997).

    PubMed  CAS  Google Scholar 

  148. H. Raghuraman, and A. Chattopadhyay, Effect of micellar charge on the conformation and dynamics of melittin, Eur. Biophys. J. (2004), Apr 8, 2004 [Epub ahead of print], PMID: 15071759.

    Google Scholar 

  149. H. Raghuraman, and A. Chattopadhyay, Interaction of melittin with membrane cholesterol: a fluorescence approach, Biophys. J. (2004), in press.

    Google Scholar 

  150. A. Guz, and Z. Wasylewski, Red-edge excitation fluorescence spectroscopy of proteins in reversed micelles, J. Protein Chem. 13, 393–399 (1994).

    PubMed  CAS  Google Scholar 

  151. H. Raghuraman, and A. Chattopadhyay, Organization and dynamics of melittin in environments of graded hydration: a fluorescence approach, Langmuir 19, 10332–10341 (2003).

    CAS  Google Scholar 

  152. H. Raghuraman, and A. Chattopadhyay, Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach, Biochim. Biophys. Acta (2004), in press.

    Google Scholar 

  153. S. Mukherjee, and A. Chattopadhyay, Motionally restricted tryptophan environments at the peptide-lipid interface of gramicidin channels, Biochemistry 33, 5089–5097 (1994).

    PubMed  CAS  Google Scholar 

  154. M. C. Tory, and A. R. Merrill, Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide, Biochim. Biophys. Acta 1564, 435–448 (2002).

    PubMed  CAS  Google Scholar 

  155. A. S. Ladokhin, L. Wang, A. W. Steggles, and P. W. Holloway, Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain, Biochemistry 30, 10200–10206 (1991).

    PubMed  CAS  Google Scholar 

  156. S. S. Rawat, D. A. Kelkar, and A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. (2004), in press.

    Google Scholar 

  157. D. J. Schibli, R. F. Epand, H. J. Vogel, and R. M. Epand, Tryptophan-rich antimicrobial peptides. comparative properties and membrane interactions, Biochem. Cell. Biol. 80, 667–677 (2002).

    PubMed  CAS  Google Scholar 

  158. R. E. Koeppe, and O. S. Andersen, Engineering the gramicidin channel, Annu. Rev. Biophys. Biomol. Struct. 25, 231–258 (1996).

    PubMed  CAS  Google Scholar 

  159. F. Heitz, G. Spach, and Y. Trudelle, Single channels of 9, 11, 13, 15-destryptophyl-phenylalanyl-gramicidin A, Biophys. J. 39, 87–89 (1982).

    Google Scholar 

  160. D. Jones, E. Hayon, and D. Busath, Tryptophan photophysics is responsible for gramicidin-channel inactivation by ultraviolet light, Biochim. Biophys. Acta 861, 62–66 (1986).

    PubMed  CAS  Google Scholar 

  161. M. Strässle, G. Stark, M. Wilhelm. P. Daumas, F. Heitz, and R. Lazaro, Radiolysis and photolysis of ion channels formed by analogues of gramicidin A with a varying number of tryptophan residues, Biochim. Biophys. Acta 980, 305–314 (1986).

    Google Scholar 

  162. K. U. Prasad, T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry, Synthesis and charaterization of (1–13C) Phe9 gramicidin A. Effects of side chain variation, Int. J. Pept. Protein Res. 22, 341–347 (1983).

    PubMed  CAS  Google Scholar 

  163. P. Daumas, F. Heitz, L. Ranjalahy-Rasoloarijao, and R. Lazaro, Gramicidin A analogs: influence of the substitution of the tryptophan by naphthylalanines, Biochimie, 71, 77–81(1989).

    PubMed  CAS  Google Scholar 

  164. S. S. Rawat, D. A. Kelkar, and A. Chattopadhyay (unpublished observations).

    Google Scholar 

  165. D. A. Kelkar, and A. Chattopadhyay, Effects of varying hydration on the organization and dynamics of an ion channel: a fluorescence approach (manuscript in preparation).

    Google Scholar 

  166. S. S. Rawat, and A. Chattopadhyay, Ion channel modulation by sterols: inactivation of gramicidin channels by cholesterol domains, Prog. Biophys. Mol. Biol. 65(Suppl 1), 110 (1996).

    Google Scholar 

  167. D. A. Kelkar, and A. Chattopadhyay (unpublished observations).

    Google Scholar 

  168. N. C. Santos, M. Prieto, and M. A. R. B. Castanho, Interaction of the major epitope region of HIV protein gp41 with membrane model systems. A fluorescence spectroscopy study, Biochemistry 37, 8764–8775 (1998).

    Google Scholar 

  169. L. A. Falls, B. C. Furie, M. Jacobs, B. Furie, and A. C. Rigby, The ω-loop region of the human prothrombin γ-carboxyglutamic acid domain penetrates anionic phospholipid membranes, J. Biol. Chem. 276, 23895–23902 (2001).

    PubMed  CAS  Google Scholar 

  170. S. Veeraraghavan, J. D. Baleja, and G. E. Gilbert, Structure and topography of the membrane-binding C2 domain of factor VIII in the presence of dodecylphosphocholine micelles, Biochem. J. 332, 549–555 (1998).

    PubMed  CAS  Google Scholar 

  171. R. F. M. de Almeida, L. M. S. Loura, F. J. Barrantes, and M. Prieto, Interaction of the γM4 transmembrane segment of the acetylcholine receptor with cholesterol-rich phases, Biophys. J. 80, 545a (2001).

    Google Scholar 

  172. F. J. Barrantes, S. A. Antonilli, M. P. Blanton, and M. Prieto, Topography of nicotinic acetylcholine receptor membrane-embedded domains, J. Biol. Chem. 275, 37333–37339 (2000).

    PubMed  CAS  Google Scholar 

  173. B. R. Pattnaik, S. Ghosh, and M. R. Rajeswari, Selective excitation of tryptophans in OmpF: a fluorescence emission study, Biochem. Mol. Biol. Int. 42, 173–181 (1997).

    PubMed  CAS  Google Scholar 

  174. T. Granjon, M.-J. Vacheron, C. Vial, and R. Buchet, Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced β structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR, Biochemistry 40, 6016–6026 (2001).

    PubMed  CAS  Google Scholar 

  175. K. Fritz-Wolf, T. Schnyder, T. Wallimann, and W. Kabsch, Structure of mitochondrial creatine kinase, Nature 381, 341–345 (1996).

    PubMed  CAS  Google Scholar 

  176. J. R. Lakowicz, and S. Keating-Nakamoto, Red-edge excitation of fluorescence and dynamic properties of proteins and membranes, Biochemistry 23, 3013–3021 (1984).

    PubMed  CAS  Google Scholar 

  177. A. P. Demchenko, Fluorescence molecular relaxation studies of protein dynamics. The probe binding site of melittin is rigid on the nanosecond time scale, FEBS Lett. 182, 99–102 (1985).

    CAS  Google Scholar 

  178. J. R. Albani, Motions studies of the human α1-acid glycoprotein (orosomucoid) followed by red-edge excitation spectra and polarization of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tryptophan residues, Biophys. Chem. 44, 129–137 (1992).

    PubMed  CAS  Google Scholar 

  179. G. Weber, and F. J. Farris, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene, Biochemistry 18, 3075–3078 (1979).

    PubMed  CAS  Google Scholar 

  180. A. Baiter, W. Nowak, W. Pawelkiewicz, and A. Kowalczyk, Some remarks on the interpretation of the spectral properties of prodan, Chem. Phys. Lett. 143, 565–570 (1988).

    Google Scholar 

  181. A. Samanta, and R. W. Fessenden, Excited state dipole moment of PRODAN as determined from transient dielectric loss measurements, J. Phys. Chem. A 104, 8972–8975 (2000).

    CAS  Google Scholar 

  182. A. Chakrabarti, Fluorescence of spectrin-bound prodan. Biochem. Biophys. Res. Commun. 226, 495–497 (1996).

    PubMed  CAS  Google Scholar 

  183. J. B. Massey, H. S. She, and H. J. Pownall, Interfacial properties of model membranes and plasma lipoproteins containing ether lipids, Biochemistry 24, 6973–6978 (1985).

    PubMed  CAS  Google Scholar 

  184. R. B. Macgregor, and G. Weber, Estimation of the polarity of the protein interior by optical spectroscopy, Nature 319, 70–73 (1986).

    PubMed  CAS  Google Scholar 

  185. P. I. H. Bastiaens, A. van Hoek, W. J. H. van Berkel, A. de Kok, and A. J. W. G. Visser, Molecular relaxation spectroscopy of flavin adenine dinucleotide in wild type and mutant lipoamide dehydrogenase from Azotobacter vmelandiu Biochemistry 31, 7061–7068 (1992).

    CAS  Google Scholar 

  186. A. Chattopadhyay, Chemistry and biology of N-(7-nitrobenz-2-oxa-l,3,-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes, Chem. Phys. Lipids 53, 1–15 (1990).

    PubMed  CAS  Google Scholar 

  187. A. Chattopadhyay, and E. London, Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-l,3-diazol-4-yl)-labeled lipids in model membranes, Biochim. Biophys. Acta 938, 24–34 (1988).

    PubMed  CAS  Google Scholar 

  188. S. Lin, and W. S. Struve, Time-resolved fluorescence of nitrobenzoxadiazole-aminohexanoic acid: effect of intermolecular hydrogen-bonding on non-radiative decay, Photochem. Photobiol. 54, 361–365 (1991).

    PubMed  CAS  Google Scholar 

  189. S. Mukherjee, A. Chattopadhyay, A. Samanta, and T. Soujanya, Dipole moment change of NBD group upon excitation studied using solvatochromic and quantum chemical approaches: implications in membrane research, J. Phys. Chem. 98, 2809–2892 (1994).

    CAS  Google Scholar 

  190. S. Fery-Forgues, J.-P. Fayet, and A. Lopez, Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state?, J. Photochem. Photobiol. A 70, 229–243 (1993).

    CAS  Google Scholar 

  191. S. S. Rawat, S. Mukherjee, and A. Chattopadhyay, Micellar organization and dynamics: a wavelength-selective fluorescence approach, J. Phys. Chem. B 101, 1922–1929 (1997).

    CAS  Google Scholar 

  192. S. S. Rawat, and A. Chattopadhyay, Structural transitions in the micellar assembly: a fluorescence study, J. Fluoresc. 9, 233–244 (1999).

    CAS  Google Scholar 

  193. A. Chattopadhyay, S. Mukherjee, and H. Raghuraman, Reverse micellar organization and dynamics: a wavelength-selective fluorescence approach, J. Phys. Chem. B 106, 13002–13009 (2002).

    CAS  Google Scholar 

  194. S. Mukherjee, H. Raghuraman, S. Dasgupta, and A. Chattopadhyay, Organization and dynamics of N-(7-nitrobenz-2-oxa-l,3,-diazol-4-yl)-labeled lipids: a fluorescence approach, Chem. Phys. Lipids 127, 91–101 (2004).

    PubMed  CAS  Google Scholar 

  195. H. Raghuraman, S. K. Pradhan, and A. Chattopadhyay, Effect of urea on the organization and dynamics of Triton X-100 micelles: a fluorescence approach, J. Phys. Chem. B 108, 2489–2496 (2004).

    CAS  Google Scholar 

  196. D. A. Kelkar, and A. Chattopadhyay, Depth-dependent solvent relaxation in reverse micelles: a fluorescence approach, J. Phys. Chem. B (2004), in press.

    Google Scholar 

  197. V. Tsukanova, D. W. Grainger, and C. Salesse, Monolayer behavior of NBD-labeled phospholipids at the air/water interface, Langmuir 18, 5539–5550 (2002).

    CAS  Google Scholar 

  198. L. R. McLean, and R. L. Jackson, Interaction of lipoprotein lipase and apolipoprotein C-II with sonicated vesicles of 1,2-ditetradecylphosphatidylcholine: comparison of binding constants, Biochemistry 24, 4196–4201 (1985).

    PubMed  CAS  Google Scholar 

  199. C. E. MacPhee, G. J. Howlett, W. H. Sawyer, and A. H. A. Clayton, Helix-helix association of a lipid-bound amphipathic α-helix derived from apolipoprotein C-II, Biochemistry 38, 10878–10884 (1999).

    PubMed  CAS  Google Scholar 

  200. A. J. Heuck, and A. E. Johnson, Pore-forming protein structure analysis in membranes using multiple independent fluorescence techniques, Cell Biochem. Biophys. 36, 89–101 (2002).

    PubMed  CAS  Google Scholar 

  201. A. H. A. Clayton, and W. H. Sawyer, Site-specific tryptophan fluorescence spectroscopy as a probe of membrane peptide structure and dynamics, Eur. Biophys. J. 31, 9–13 (2002).

    PubMed  CAS  Google Scholar 

  202. V. Gopal, H.-W. Ma, M. K. Kumaran, and D. Chatterji, A point mutation at the junction of domain 2.3/2.4 of transcription factor sigma 70 abrogates productive transcription and restores its expected mobility on a denaturing gel, J. Mol. Biol. 242, 9–22 (1994).

    PubMed  CAS  Google Scholar 

  203. M. E. Menezes, P. D. Roepe, and H. R. Kaback, Design of a membrane transport protein for fluorescence spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 87, 1638–1642 (1990).

    PubMed  CAS  Google Scholar 

  204. A. Chattopadhyay, and M. G. McNamee, Average membrane penetration depth of tryptophan residues of the nicotinic acetylcholine receptor by the parallax method, Biochemistry 30, 7159–7164 (1991).

    PubMed  CAS  Google Scholar 

  205. V. W. Cornish, D. R. Benson, C. A. Altenbach, K. Hideg, W. L. Hubbell, and P. G. Schultz, Site-specific incorporation of biophysical probes into proteins, Proc. Natl. Acad. Sci. U.S.A. 91, 2910–2914 (1994).

    PubMed  CAS  Google Scholar 

  206. M. W. Nowak, P. C. Kearney, J. R. Sampson, M. E. Saks, C. G. Labarca, S. K. Silverman, W. Zhong, J. Thorson, J. N. Abelson, N. Davidson, P. G. Schultz, D. A. Dougherty, and H. A. Lester, Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells, Science 268, 439–442 (1995).

    PubMed  CAS  Google Scholar 

  207. B. D. Cohen, T. B. McAnaney, E. S. Park, Y. N. Jan, S. G. Boxer, and L. Y. Jan, Probing protein electrostatics with a synthetic fluorescent amino acid, Science 296, 1700–1703 (2002).

    PubMed  CAS  Google Scholar 

  208. J. B. A. Ross, A. G. Szabo, and C. W. V. Hogue, Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic acid interactions, Methods Enzymol. 278, 151–190 (1997).

    PubMed  CAS  Google Scholar 

  209. J. Guharay, and P. K. Sengupta, Characterization of the fluorescence emission properties of 7-azatryptophan in reverse micellar environments, Biochem. Biophys. Res. Commun. 219, 388–392 (1996).

    PubMed  CAS  Google Scholar 

  210. C.-Y. Wong, and M. R. Eftink, Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability, Protein Sci. 6, 689–697 (1997).

    PubMed  CAS  Google Scholar 

  211. D. Mendel, J. A. Ellman, Z. Chang, D. L. Veenstra, P. A. Kollman, and P. G. Schultz, Probing protein stability with unnatural amino acids, Science 256, 1798–1802 (1992).

    PubMed  CAS  Google Scholar 

  212. J. Broos, F. ter Veld, and G. T. Robillard, Membrane protein-ligand interactions in Eschenchia coli vesicles and living cells monitored via a biosynthetically incorporated tryptophan analogue, Biochemistry 38, 9798–9803 (1999).

    PubMed  CAS  Google Scholar 

  213. B. Sengupta, J. Guharay, A. Chakraborty, and P. K. Sengupta, Low temperature luminescence behaviours of 7-azatryptophan, 5-hydroxytryptophan and their chromophoric moieties, Spectrochim. Acta A Mol. Biomol. Spectrosc. 58, 2005–2012 (2002).

    PubMed  Google Scholar 

  214. J. H. Crowe, and L. M. Crowe, Effect of dehydration on membranes and membrane stabilization at low water activities, Biol. Membr. 5, 57–103 (1984).

    CAS  Google Scholar 

  215. R. P. Rand, and V. A. Parsegian, Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta 988, 351–376 (1989).

    CAS  Google Scholar 

  216. C. Ho, M. B. Kelly, and C. D. Stubbs, The effect of phospholipid unsaturation and alcohol perturbation at the protein/lipid interface probed using fluorophore lifetime heterogeneity, Biochim. Biophys. Acta 1193, 307–315 (1994).

    PubMed  CAS  Google Scholar 

  217. W. B. Fischer, S. Sonar, T. Marti, H. G. Khorana, and K. J. Rothschild, Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction, Biochemistry 33, 12757–12762 (1994).

    PubMed  CAS  Google Scholar 

  218. H. Kandori, Y. Yamazaki, J. Sasaki, R. Needleman, J. K. Lanyi, and A. Maeda, Water-mediated proton transfer in proteins: an FTIR study of bacteriorhodopsin, J. Am. Chem. Soc. 117, 2118–2119 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Raghuraman, H., Kelkar, D.A., Chattopadhyay, A. (2005). Novel Insights Into Protein Structure and Dynamics Utilizing the Red Edge Excitation Shift Approach. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2005. Reviews in Fluorescence, vol 2005. Springer, Boston, MA. https://doi.org/10.1007/0-387-23690-2_9

Download citation

Publish with us

Policies and ethics