Skip to main content

Multi-Dimensional Time-Correlated Single Photon Counting

  • Chapter
Reviews in Fluorescence 2005

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2005))

Abstract

Optical spectroscopy techniques have found a wide range of applications in biomedical imaging and sensing because they are non-destructive and deliver biochemically relevant information about the systems investigated (Mycek and Pogue, 2003; Lakowicz, 1999). Typical applications are one- and two-photon fluorescence laser scanning microscopy, fluorescence endoscopy, control of drug delivery in photodynamic therapy, dynamics of protein-dye complexes on the single molecule level, chlorophyll fluorescence dynamics, and diffuse optical tomography of thick tissue. Most of these techniques use the fluorescence of exogenous or endogenous fluorophores to obtain information about the systems investigated. In the majority of the applications the fluorescence intensity, fluctuations of the fluorescence intensity, or the fluorescence spectra are recorded. However, the fluorescence of organic fluorophores is not only characterised by its intensity or spectrum, it has also a characteristic fluorescence lifetime. The fluorescence lifetime is useful as a separation parameter to distinguish the fluorescence components of endogenous fluorophores in cells and tissues. These components often have poorly defined fluorescence spectra but can be distinguished by their fluorescence lifetime (König and Riemann, 2003; Schweitzer, 2001; Urayama and Mycek, 2003). Moreover, the fluorescence lifetime of a fluorophore depends on the local environment of the molecules. Because the lifetime is widely independent of the concentration its measurement is a direct approach to quenching and energy transfer effects (Lakowicz, 1999). Typical examples are the mapping of cell parameters such as pH, ion concentrations, oxygen saturation or the binding state to proteins, lipids, or DNA (Gerritsen et al.,1997; Knemeyer et al., 2002; Lakowicz, 1999; Rück et al., 2003; Sanders et al., 1995, Van Zandvoort et al., 2002)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.6. References

  1. Ameer-Beg, S.M., Edme, N., Peter, M., Barber, P.R., Ng, T. and Vojnovic, B., 2003, Imaging protein-protein interactions by multiphoton FLIM, Proc. SPIE 5139: 180.

    Article  CAS  Google Scholar 

  2. Arridge, S.R., 1999, Optical tomography in medical imaging, Inverse Problems 15: R41.

    Article  Google Scholar 

  3. Bacskai, B.J., Skoch, J., Hickey, G.A., Allen, R. and Hyman, B.T., 2003, Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques, J. Biomed. Opt 8: 368.

    Article  PubMed  CAS  Google Scholar 

  4. Ballew, R.M. and Demas, J.N., 1989, An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays, Anal. Chem. 61: 30.

    Article  CAS  Google Scholar 

  5. Basche, T., Moerner, W.E., Orrit, M. and Talon, H., 1992, Photon antibunching in the fluorescence of a single dye molecule trapped in a solid, Phys. Rev. Lett. 69: 516.

    Article  Google Scholar 

  6. Becker, W., Stiel, H. and Klose, E., 1991, Flexible instrument for time-correlated single photon counting. Rev. Sci. Instrum. 62:2991.

    Article  CAS  Google Scholar 

  7. Becker, W., Hickl, H., Zander, C, Drexhage, K.H., Sauer, M., Siebert, S. and Wolfrum, J., 1999, Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single photon counting, Rev. Sci. Instrum. 70: 1835.

    Article  CAS  Google Scholar 

  8. Becker, W., Bergmann, A., Wabnitz, H., Grosenick, D. and Liebert, A., 2001, High count rate multichannel TCSPC for optical tomography, Proc. SPIE 4431: 249.

    Article  Google Scholar 

  9. Becker, W., Benndorf, K., Bergmann, A., Biskup, C., König, K., Tirlapur, U. and Zimmer, T., 2001, FRET measurements by TCSPC laser scanning microscopy, Proc. SPIE 4431: 94.

    Article  Google Scholar 

  10. Becker, W., Bergmann, A., Biskup, C., Zimmer, T., Klöcker, N. and Benndorf, K., 2002, Multi-wavelength TCSPC lifetime imaging, Proc. SPIE 4620: 79.

    Article  Google Scholar 

  11. Becker, W. and Bergmann, A., 2004, High-speed FLIM data acquisition by time-correlated single photon counting, Proc. SPIE 5323: 27.

    Article  Google Scholar 

  12. Becker, W., Bergmann, A., Hink, M.A., König, K., Benndorf, K. and Biskup, C., 2004, Fluorescence lifetime imaging by time-correlated single photon counting, Micr. Res. Techn. 6: 58.

    Article  CAS  Google Scholar 

  13. Bereszovska, O., Ramdya, P., Skoch, J., Wolfe, M.S., Bacskai, B.J. and Hyman, B.T., 2003, Amyloid precursor protein associates with a nicastrin-dependent docking site on the presenilin 1-γ-secretase complex in cells demonstrated by fluorescence lifetime imaging, J. Neurosc. 23: 4560.

    Google Scholar 

  14. Berland, K.M., So, P.T.C. and Gratton, E., 1995, Two-photon fluorescence correlation spectroscopy: Method and application to the intracellular environment, Biophys. J. 68: 694.

    PubMed  CAS  Google Scholar 

  15. Birch, D.J.S., Holm, A.S., Imhof, R.E., Nadolski, B.Z. and Suhling, K., 1988, Rapid communication: Multiplexed array fluorometry, J. of Phys. E., Sci Iustrum. 21: 415.

    Article  CAS  Google Scholar 

  16. Biskup, C., Zimmer, T. and Benndorf, K., 2004, FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera, 2004, Nature Biotechnology Vol. 22,2: 220.

    Article  PubMed  CAS  Google Scholar 

  17. Buurman, E.P., Sanders, R., Draaijer, A., Gerritsen, H.C., van Veen, J.J.F., Houpt, P.M. and Levine, Y.K., 1992, Fluorescence lifetime imaging using a confocal laser scanning microscope, Scanning 14: 155.

    Google Scholar 

  18. Carlsson, K. and Liljeborg, A., 1997, Confocal fluorescence microscopy using spectral and lifetime information to simultaneously record four fluorophores with high channel separation, J. Microsc. 37: 185.

    Google Scholar 

  19. Carlsson, K. and Liljeborg, A., 1998, Simultaneous confocal lifetime imaging of multiple fluorophores using the intensity-modulated multiple-wavelength scanning (IMS) technique, J. Microsc. 191: 119.

    Article  PubMed  CAS  Google Scholar 

  20. Carlsson, K. and Philip, J.P., 2002, Theoretical investigation of the signal-to-noise ratio for different fluorescence lifetime imaging techniques, Proc. SPIE 4622: 70.

    Article  Google Scholar 

  21. Chen, Y. and Periasamy, A., 2004, Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization, Microsc. Res. Tech. 63,1: 72.

    Article  PubMed  CAS  Google Scholar 

  22. Chernomordik, V., Hattery, D.W., Grosenick, D., Wabnitz, H., Rinneberg, H., Moesta, K.T., Schlag, P.M. and Gandjbakhche, A., 2002, Quantification of optical properties of breast tumor using random walk theory, J. Biomed. Opt. 7: 80.

    Article  PubMed  Google Scholar 

  23. Choi, JH., Wolf, M., Toronov, V., Wolf, U., Polzonetti, C., Hueber, D., Safonova, L.P., Gupta, R., Michalos, A., Mantulin, W. and Gratton, E., 2004, Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach, J. Biomed. Opt. Vol. 9,1: 221.

    Article  PubMed  Google Scholar 

  24. Cole, M.J., Siegel, J., Dowling, R., Dayel, M.J., Parsons-Karavassilis, D., French, P.M., Lever, M.J., L.O. Sucharov, Neil, M.A, Juskaitas, R. and Wilson, T., 2001, Time-domain whole-field lifetime imaging with optical sectioning, J. Microsc. 203: 246.

    Article  PubMed  CAS  Google Scholar 

  25. Cova, S., Bertolaccini, M. and Bussolati, C., 1973, The measurement of luminescence waveforms by single-photon techniques, Phys. Stat. Sol. 18: 11.

    Article  CAS  Google Scholar 

  26. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G., 1996, Time-resolved imaging on a realistic tissue phantom: μs and μa images versus time-integrated images, Appl. Opt. 35,22: 4533.

    Google Scholar 

  27. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. and Valentini, G., 1998, Imaging with diffusing light: an experimental study of the effect of background optical properties, Appl. Opt. 37, No. 16: 3564.

    PubMed  CAS  Google Scholar 

  28. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. and Valentini, G., 1999, Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance, Appl. Opt. 38, No. 16: 3670.

    PubMed  CAS  Google Scholar 

  29. Cubeddu, R., Giambattistelli, E., Pifferi, A., Taroni, P. and Torricelli, A., 2001, Portable 8-channel time-resolved optical imager for functional studies of biological tissues, Proc. SPIE 4431: 260.

    Article  Google Scholar 

  30. Denk, W., Strickler, J.H. and Webb, W.W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 24: 73

    Article  Google Scholar 

  31. Desmettre, T., Devoisselle, J.M. and Mordon, S., 2000, Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography, Elsevier Science: Survey of Ophthalmology Vol. 45,1: 15.

    Article  CAS  Google Scholar 

  32. Dickinson, M.E., Waters, C.W., Bearman, G., Wolleschensky, R., Tille, S. and Fraser, S.E., 2002, Sensitive imaging of spectrally overlapping fluorochromes using the LSM 510 META BIOS, Proc. SPIE 4620: 123.

    Article  CAS  Google Scholar 

  33. Dowling, K., Hyde, S.C.W., Dainty, J.C., French, P.M.W. and Hares, J.D., 1997, 2-D fluorescence liefetime imaging using a time-gated image intensifier, Elsevier: Opt. Communications 135: 27.

    CAS  Google Scholar 

  34. Dunsby, C. and French, P. M. W., 2003, Techniques for depth-resolved imaging through turbid media including coherence-gated imaging, J. Phy. D: Appl. Phys. 63: R207.

    Article  Google Scholar 

  35. Eggerling, C., Berger, S., Brand, L., Fries, J.R., Schaffer, J., Volkmer, A. and Seidel, C.A., 2001, Data registration and selective single-molecule analysis using multi-parameter fluorescence detection, J. Biotechnol., 86: 163.

    Article  Google Scholar 

  36. Eliceiri, K.W., Fan, C.H., Lyons, G.E. and White, J.G., 2003, Analysis of histology specimens using lifetime multiphoton microscopy, J. Biom. Opt. 8: 376.

    Article  Google Scholar 

  37. Farrel, T. J. and Patterson, M. S., 2003, Diffusion modelling of fluorescence in tissue, in: Handbook of Biomedical Fluorescence; ed. by Mycek and Pogue, Marcel Dekker, New York Basel, pp. 29–60.

    Google Scholar 

  38. Gallant, P., Belenkov, A., Ma, G., Lesage, F., Wang, Y., Hall, D, and McIntosh, L., 2004, A quantitative time-domain optical imager for small animals in vivo fluorescence studies, OSA Biomedical Optics Topical meeting, Technical digest.

    Google Scholar 

  39. Gao, F., Poulet, P. and Yamada, Y., 2000, Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography, Appl. Opt. 39: 5898.

    Article  PubMed  CAS  Google Scholar 

  40. Geddes, C.D., Parfenov, A. and Lakowicz, J.R., 2003, Photodeposition of silver can result in metal-enhanced fluorescence, Appl. Spectr. 57,5: 526.

    Article  CAS  Google Scholar 

  41. Geddes, C.D., Cao, H., Gryczynski, I., Fang, J. and Lakowicz, J.R., 2003, Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging, J. Phys. Chem. A 107: 3443.

    CAS  Google Scholar 

  42. Gerritsen, H.C., Sanders, R., Draaijer, A. and Levine, Y.K., 1997, Fluorescence lifetime imaging of oxygen in cells, J. Fluoresc. 7: 11.

    Article  CAS  Google Scholar 

  43. Gerritsen, H.C., Asselbergs, M.A.H., Agronskaia, A.V. and van Sark, W.G.J.H.M., 2002, Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution, J. Microsc. 206:218.

    Article  PubMed  CAS  Google Scholar 

  44. Gratton, E., Breusegem, S., Sutin, J., Ruan, Q. and Barry, N., 2003, Fluorescence lifetime imaging for the two-photon microscope: Time-domain and frequency domain methods, J. Biomed. Opt. 8,3: 381.

    Article  PubMed  Google Scholar 

  45. Grosenick, D., Wabnitz, H., Rinneberg, H., Moesta, K.T. and Schlag, P.M., 1999, Development of a time-domain optical mammograph and first in-vivo applications, Appl. Opt. 38: 2927.

    PubMed  CAS  Google Scholar 

  46. Grosenick, D., Moesta, K.T., Wabnitz, H., Mucke, J., Stroszcynski, C., MacDonald, R., Schlag, P.M. and Rinneberg, H., 2003, Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors, Appl. Opt. 42, No 16: 3170.

    Article  PubMed  Google Scholar 

  47. Grosenick, D., Wabnitz, H., Moesta, K.T., Mucke, J., Möller, M., Stroszczynski, C., Stößel, J., Wassermann, B., Schlag, P.M. and Rinneberg, H., 2004, Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography, Physics in Medicine & Biology 49,7: 1165.

    Article  Google Scholar 

  48. Hanbury-Brown, R. and Twiss, R.Q., 1956, Nature, 177: 27.

    Article  Google Scholar 

  49. Hartig, P.R. and Sauer, K., 1976, Measurement of very short fluorescence lifetimes by single photon counting, Rev. Sci. Instrum. 47: 122.

    Article  Google Scholar 

  50. Hebden, J.C., Veenstra, H., Dehghani, H., Hillman, E.M.C., Schweiger, M., Arridge, S.R. and Delpy, D.T., 2001, Three-dimensional time-resloved optical tomography of a conical breast phantom, Appl. Optics 40: 3278.

    Article  CAS  Google Scholar 

  51. Hebden, J.C., Gibson, A., Austin, T., Yusof, R.M., Everdell, N., Delpy, D.T., Arridge, S.R., Meek, J.H. and Wyatt, J.S., 2004, Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography, Physics in Medicine & Biology 49,7: 1117.

    Article  Google Scholar 

  52. Herman, B., 1998, Fluorescence Microscopy, 2nd. edn.. Springer, New York.

    Google Scholar 

  53. Hopf, A. and Neher, E., 2002, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J. 80: 2029.

    Google Scholar 

  54. Kästner, C.N., Prummer, M., Sick, B., Renn, A., Wild, U.P. and Dimroth, P., 2003, The citrate carrier CitS probed by single molecule fluorescence spectroscopy, Biophys. J. 84: 1651.

    PubMed  Google Scholar 

  55. Kelbauskas, L. and Dietel, W., 2002, Internalization of aggregated photosensitizers by tumor cells: Subcellular time-resolved fluorescence spectroscopy on derivates of pyropheophorbide-a ethers and chlorin e6 under femtosecond one-and two-photon excitation, Photochem. Photobiol. 76: 686.

    Article  PubMed  CAS  Google Scholar 

  56. Knemeyer, J.-P., Marmé, N. and Sauer, M., 2002, Probes for detection of specific DNA sequences at the single-molecule level, Anal. Chem. 72: 3717.

    Article  CAS  Google Scholar 

  57. Köllner, M. and Wolfrum, J., 1992, How many photons are necessary for fluorescence-lifetime measurements? Phys. Chem. Lett. 200: 199.

    Article  Google Scholar 

  58. König, K., So, P.T.C., Mantulin, W.W., Tromberg, B.J. and Gratton, E., 1996, Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress, J. Microsc. 183: 197.

    PubMed  Google Scholar 

  59. König, K., 2000, Multiphoton microscopy in life sciences, J. Microsc. 200: 83.

    Article  PubMed  Google Scholar 

  60. König, K. and Riemann, I., 2003, High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution, J. Biom. Opt. 8: 432.

    Article  Google Scholar 

  61. Kühnemuth, R. and Seidel, C.A.M., 2001, Principles of single molecule multiparameter fluorescence spectroscopy, Single Molecules 2:251.

    Article  Google Scholar 

  62. Lakowicz, J.R. and Berndt, K., 1991, Lifetime-selective fluorescence lifetime imaging using an rf phase-sensitive camera, Rev. Sci. Instrum. 62: 1727.

    Article  CAS  Google Scholar 

  63. Lakowicz, J.R., Szmacinski, H., Nowaczyk, K. and Johnson, M.L., 1992, Fluorescence lifetime imaging of free and protein-bound NADH, Proc. Natl. Acad. Sci. USA Biochem. Vol. 89: 1271.

    Article  CAS  Google Scholar 

  64. Lakowicz, J.R., 1999, Principles of Fluorescence Spectroscopy, 2nd ed., Plenum Press, New York.

    Google Scholar 

  65. Lakowicz, J.R., Shen, B., Gryczynski, Z., D’Auria, S. and Gryczynski, I., 2001, Intrinsic fluorescence from DNA can be enhanced by metallic particles, Biochem. and Biophys. Research Communications 286: 875.

    Article  CAS  Google Scholar 

  66. Laques, S. L., 2003, Monte Carlo simulations of fluorescence in turbid media, in: Handbook of Biomedical Fluorescence; Mycek and Pogue, ed., Marcel Dekker, New York Basel, pp. 61–107.

    Google Scholar 

  67. Leskovar, B. and Lo, C.C., 1976, Photon counting system for subnanosecond fluorescence lifetime measurements, Rev. Sci. Instrum. Vol. 47: 9.

    Article  Google Scholar 

  68. Lewis, C. and Ware, W.R., 1973, The measurement of short-lived fluorescence decay using the single photon counting method, Rev. Sci. Instrum. Vol. 44: 2.

    Google Scholar 

  69. Liebert, A., Wabnitz, H., Steinbrink, J., Obrig, H., Möller, M., Macdonald, R. and Rinneberg, H., 2003, Intra-and extracerebral changes of hemoglobin concentrations by analysis of moments of distributions of times of flight of photons, SPIE 5138: 126.

    Article  CAS  Google Scholar 

  70. Liebert, A., Wabnitz, H., Grosenick, D., Möller, M., Macdonald, R. and Rinneberg, H., 2003, Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons, Appl. Opt. Vol. 42: 28.

    Google Scholar 

  71. Liebert, A., Wabnitz, H., Steinbrink, J., Obrig, H., Möller, M., Macdonald, R., Villringer, A. and Rinneberg, H., 2004, Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight, Appl. Opt. 43: 2037.

    Article  Google Scholar 

  72. Malicka, J., Gryczynski, I., Geddes, C.D. and Lakowicz, J.R., 2003, Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging, J. Biomed. Opt. 8: 472.

    Article  PubMed  CAS  Google Scholar 

  73. Marcu, L., Grundfest, W. S. and Fishbein, C., 2003, Time-resolved laser-induced fluorescence spectroscopy for staging atherosclerotic lesions, in: Handbook of Biomedical Fluorescence; Mycek and Pogue, ed., Marcel Dekker, New York Basel, pp. 397–430.

    Google Scholar 

  74. Masters; B.R., So, P.T.C. and Gratton, E, 1997, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin, Biophys. J. Vol. 72: 2405.

    PubMed  CAS  Google Scholar 

  75. Maxwell, K. and Johnson, G.N., 2000, Chlorophyll fluorescence-a practical guide, J. Experimental Botany Vol. 51,345: 659.

    Article  CAS  Google Scholar 

  76. McBride, T.O., Pogue, B.W, Gerety, E.D., Poplack, S.B., Österberg, U.L. and Paulsen, K.D., 1999, Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue, Appl. Opt 38: 5480.

    CAS  PubMed  Google Scholar 

  77. McBride, T.O., Pogue, B.W, Jiang, S., Österberg, U.L. and Paulsen, K.D., 2001, A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo, Rev. of Sci. Instrum. Vol. 72, No. 3: 1817.

    Article  CAS  Google Scholar 

  78. Meiling, W. and Stary, F., 1963, Nanosecond pulse techniques, Akademie-Verlag, Berlin.

    Google Scholar 

  79. Michler, P., Imamoglu, A., Mason, M.D., Carson, P.J., Strouse, G.F. and Buratto, S.K., 2000, Quantum correlation among photons from a single quantum dot at room temperature, Nature 406: 968.

    Article  PubMed  CAS  Google Scholar 

  80. Minsky, M., 1988, Memoir on inventing the confocal microscope, Scanning 10: 128.

    Google Scholar 

  81. Mordon, S., Devoisselle, J.M. and Soulie-Begu, S., 1998, Indocyanine green: physicochemical factors affecting its fluorescence in vivo, Microvascular Res. 55: 146.

    Article  CAS  Google Scholar 

  82. Müller, R., Zander, C., Sauer, M., Deimel, M., Ko, D.-S., Siebert, S., Arden-Jacob, J., Deltau, G., Marx, N.J., Drexhage, K.H. and Wolfrum, J., 1996, Time-resolved identification of single molecules in solution with a pulsed semiconductor diode laser, Chem. Phys. Lett. 262: 716.

    Article  Google Scholar 

  83. Mycek, M.-A., Pogue, B. W., 2003, Handbook of Biomedical Fluorescence, Marcel Dekker, New York-Basel.

    Google Scholar 

  84. Ntziachristos, V., Ma, X.H. and Chance, B., 1998, Time-correlated single-photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev. Sci. Instrum. 69, No. 12: 4221.

    Article  CAS  Google Scholar 

  85. Ntziachristos, V., Ma, X.H., Yodh, A.G. and Chance, B., 1999, Multichannel photon counting instrument for spatially resolved near infrared spectroscopy, Rev. Sci. Instrum. 70, No. 1: 193.

    Article  CAS  Google Scholar 

  86. Ntziachristos, V., Yodh, A.G., Schnall, M. and Chance, B., 2000, Concurrent MR1 and diffuse optical tomography of breast after indocyanine green enhancement, PNAS 97: 2767.

    Article  PubMed  CAS  Google Scholar 

  87. Ntziachristos, V. and Chance, B., 2001, Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy, Med. Phys. 28, No. 6: 410.

    Google Scholar 

  88. O’Connor, D.V. and Phillips, D., 1984,Time Correlated Single Photon Counting, Academic Press, London.

    Google Scholar 

  89. O’Leary, M.D., Boas, D.A., Li, X.D., Chance., B. and Yodh, A.G., 1996, Fluorescence lifetime imaging in turbid media, Opt. Letters 21,2: 158.

    Google Scholar 

  90. Patterson, M.S., Chance, B. and Wilson, B.C., 1989, Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties, Appl. Opt. 28: 2331.

    Google Scholar 

  91. Patterson, G.H. and Piston, D.W., 2000, Photobleaching in two-photon excitation microscopy, Biophys. J. 78: 2159.

    PubMed  CAS  Google Scholar 

  92. Paul, R.J. and Schneckenburger, H., 1996, Oxygen concentration and the oxidation-reduction state of yeast: Determination of free/bound NADH and flavins by time-resolved spectroscopy, Springer Naturwissenschaften 83: 32.

    Article  CAS  Google Scholar 

  93. Pawley, J., 1995, Handbook of Biological Confocal Microscopy, Plenum, New York.

    Google Scholar 

  94. Pepperkok, R., Squire, A., Geley, S. and Bastiaens, P.I.H., 1999, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy, Curr. Biol. 9: 269.

    Article  PubMed  CAS  Google Scholar 

  95. Periasamy, A., Elangovan, M, Wallrabe, H., Barroso, M., Demas, J.N., Brautigan, D.L. and Day, R.N., 2001, Wide-field, confocal, two-photon, and lifetime resoncance energy transfer imaging microscopy, in: Methods in Cellular Imaging, A. Periasamy, ed., Oxford University Press, pp. 295–308.

    Google Scholar 

  96. Philip, J.P. and Carlsson, K., 2003, Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging, J. Opt. Soc. Am. A 20: 368.

    Article  Google Scholar 

  97. Pifferi, A., Taroni, P., Torricelli, A., Messina, F., Cubeddu, R. and Danesini, G., 2003, Four-wavelength time-resolved optical mammography in the 680-980-nm range, Opt. Lett. 28: 1138.

    Article  PubMed  Google Scholar 

  98. Prummer, M., Hübner, C, Sick, B., Hecht, B., Renn, A. and Wild, U.P., 2000, Single-molecule identification by spectrally and time-resolved fluorescence detection, Anal. Chem. 72: 433.

    Article  CAS  Google Scholar 

  99. Prummer, M., Sick, B., Renn, A. and Wild, U.P., 2004, Multiparameter microscopy and spectroscopy for single molecule Analysis, Anal. Chem. 76: 1633.

    Article  PubMed  CAS  Google Scholar 

  100. Rigler, R., Mets, Ü, Widengren, J. and Kask, P., 1993, Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion, European Biophys. J. 22: 169.

    CAS  Google Scholar 

  101. Rigler, R. and Elson, E.S., 2001, Fluorescence Correlation Spectroscopy, Springer, Berlin, Heidelberg.

    Google Scholar 

  102. Rück, A., Dolp, F., Scalfi-Happ, C., Steiner, R. and Beil, M., 2003, Time-resolved microspectrofluorometry and fluorescence lifetime imaging using ps pulsed diode lasers in laser scanning microscopes, Proc. SPIE 5139: 166.

    Article  CAS  Google Scholar 

  103. Sanders, R., Draaijer, A., Gerritsen, H.C., Houpt, P.M. and Levine, Y.K., 1995, Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy, Anal. Biochem. 227,2: 302.

    Article  PubMed  CAS  Google Scholar 

  104. Sauer, M., Zander, C., Müller, R., Ullrich, B., Kaul, S., Drexhage. K.H. and Wolfrum, J., 1997, Detection and identification of individual antigen molecules in human serum with pulsed semiconductor lasers. Appl. Phys. B 65: 427.

    Article  CAS  Google Scholar 

  105. Schaffer, J., Volkmer, A., Eggerling, C., Subramaniam, V., Striker, G. and Seidel, C.A.M., 1999. Identification of single molecules in aqueous solution by time-resolved fluorescence anisotropy, J. Phys. Chem. A, 103: 331.

    Article  CAS  Google Scholar 

  106. Schmidt, F.E.W., Fry, M.E., Hillman, E.M.C., Hebden, J.C. and Delpy, D.T., 2000, A 32-channel time-resolved instrument for medical optical tomography, Rev. Sci. Instrum. 71: 256.

    Article  CAS  Google Scholar 

  107. Schuyler, R. and Isenberg, I., 1971, A Monophoton Fluorometer with Energy Discrimination. Rev. Sci. Instrum., Vol. 42: 6.

    Article  Google Scholar 

  108. Schweitzer, D., Kolb, A., Hammer, M. and Thamm, E., 2001, Basic investigations for 2-dimensional time-resolved fluorescence measurements at the fundus, Int. Ophthalmol. 23: 399.

    Article  PubMed  CAS  Google Scholar 

  109. Schwille, P., Kummer, S., Heikal, A.H., Moerner, W.E. and Webb, W.W.W., 2000, Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins, PNAS 97: 151.

    Article  PubMed  CAS  Google Scholar 

  110. Schwille, P., Haupts, U., Maiti, S. and Webb, W.W.W., 1999, Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation, Biophys. J. Vol. 77: 2251.

    PubMed  CAS  Google Scholar 

  111. Sevick-Muraca, E.M., Godavarty, A., Houston, J.P., Thompson. A. B. and Roy, R., 2003, Near-infrared imaging with fluorescecnt contrast agents, in: Handbook of Biomedical Fluorescence; Mycek and Pogue, ed., Marcel Dekker, New York Basel, pp. 445–527.

    Google Scholar 

  112. Sherman, L., Ye, J.Y., Albert, O. and Norris, T.B., 2002, Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror, J. Microsc. 206: 65.

    Article  PubMed  CAS  Google Scholar 

  113. So, P.T.C., French, T. and Gratton, E., 1994, A frequency domain microscope using a fast-scan CCD camera, Proc. SPIE 2131: 83.

    Article  Google Scholar 

  114. So, P.T.C., French, T., Yu, W.M., Berland, K.M., Dong, C.Y. and Gratton, E., 1995, Time-resolved fluorescence microscopy using two-photon excitation, Bioimaging 3: 49.

    Article  Google Scholar 

  115. Squire, A., Verveer, P.J. and Bastiaens, P.I.H., 2000, Multiple frequency fluorescence lifetime imaging microscopy, J. Microsc. 197: 136.

    Article  PubMed  CAS  Google Scholar 

  116. Straub, M., Hell, S.W., 1998, Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope, Appl. Phys. Lett. 73: 1769.

    Article  CAS  Google Scholar 

  117. Syrtsma, J., Vroom, J.M., de Grauw, C.J. and Gerritsen, H.C., 1998, Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation, J. Microsc. 191: 39.

    Article  Google Scholar 

  118. Taroni, P., Pifferi, A., Torricelli, A., Spinelli, L., Danesini, G.M. and Cubeddu, R., 2004, Do shorter wavelengths improve contrast in optical mammography? Physics in Medicine & Biology 49,7: 1203.

    Article  CAS  Google Scholar 

  119. Taroni, P., Danesini, G., Torricelli, A., Pifferi, A., Spinelli, L. and Cubeddu, R., 2004, Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm, J. Biomed. Opt. 9: 464.

    Article  PubMed  Google Scholar 

  120. Tirlapur, U.K. and König, K., 2002, Targeted transfection by femtosecond laser, Nature 418: 290.

    Article  PubMed  CAS  Google Scholar 

  121. Thomson, N.L., 1991, Fluorescence correlation spectroscopy, Topics in: Fluorescence Spectroscopy, J.R. Lakowicz, ed., Plenum Press, Vol. 1, New York, pp. 337.

    Google Scholar 

  122. Thompson, R.M., Stevenson, R.M., Shields, A.J., Farrer, I., Lobo, C.J., Ritchie, D.A., Leadbeater, M.L. and Pepper, M., 2001, Single-photon emission from exciton complexes in individual quantom dots, Phys. Rev. B 64: 201302.

    Article  CAS  Google Scholar 

  123. Torricelli, A., Pifferi, A., Taroni, P., Gambattiste, E. and Cubeddu, R., 2001, In vivo optical characterization of human tissue from 610 to 1010 nm by time-resolved reflectance spectroscopy, Phys. Med. Biol. 46: 2227.

    Article  PubMed  CAS  Google Scholar 

  124. Torricelli, A., Spinelli, L., Pifferi, A., Taroni, P. and Cubeddu, R., 2003, Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multi-wavelength time-resolved optical mammography, Optics Express 11: 853.

    Article  PubMed  Google Scholar 

  125. Torricelli, A., Quaresima, V., Pifferi, A., Biscotti, G., Spinelli, L., Taroni, P., Ferrari, M. and Cubeddu, R., 2004, Mapping of calf muscle oxygenation and haemoglobin content during plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy, Phys. Med. Biol. 49: 685.

    Article  PubMed  CAS  Google Scholar 

  126. Tramier, M., Gautier, I., Piolot, T., Ravalet, S., Kemnitz, K., Coppey, J., Durieux, C., Mignotte, V. and Coppey-Moisan, M., 2002, Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells, Biophys. J. 83: 3570.

    PubMed  CAS  Google Scholar 

  127. Urayama, P., Mycek, M-A., 2003, Fluorescence lifetime imaging microscopy of endogenous biological fluorescence, in: Handbook of Biomedical Fluorescence; Mycek and Pogue, ed., Marcel Dekker, New York Basel, pp. 211–236.

    Google Scholar 

  128. Van Zandvoort, M.A.M.J., de Grauw, C.J., Gerritsen, H.C., Broers, J.L.V., Egbrink, M.G.A., Ramaekers, F.C.S. and Slaaf, D.W., 2002, Discrimination of DNA and RNA in cells by a vital fluorescent probe: Lifetime imaging of SYTO13 in healthy and apoptotic cells, Cytometry 47: 226.

    Article  PubMed  Google Scholar 

  129. Verveer, P.J., Squire, A., Bastiaens, P.I.H., 2001, Frequency-domain fluorescence lifetime imaging microscopy: A window on the biochemical landscape of the cell, in: Methods in Cellular Imaging, A. Periasamy, ed., Oxford University Press, pp. 273–294.

    Google Scholar 

  130. Wabnitz, H. und Rinneberg, H., 1997, Imaging in turbid media by photon density waves: spatial resolution and scaling relations, Appl. Opt. 36: 64.

    Article  PubMed  CAS  Google Scholar 

  131. Wabnitz, H., Liebert, A., Möller, M., Grosenick, D., Model, R. und Rinneberg, H., 2002, Scanning laser-pulse mammography: matching fluid and off-axis measurements, Biomedical Topical Meeting, Technical Digest, OSA 686.

    Google Scholar 

  132. Wallace, V.P., Dunn, A.K., Coleno, M.L. and Tromberg, B.J., 2001, Two-photon microscopy in highly scattering tissue, in: Methods in Cellular Imaging, A. Periasamy, ed., Oxford University Press, pp. 180–199.

    Google Scholar 

  133. Wallrabe, H., Stanley, M., Periasamy, A. and Barroso, M., 2003, One-and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes, J. of Biomed. Opt. 8: 1.

    Google Scholar 

  134. Weston, K.D., Dyck, M, Tinnefeld, P., Müller, C, Herten, D.P. and Sauer, M., 2002, Measuring the number of independent emitters in single molecule fluorescence images and trajectories using coincident photons, Anal. Chem. 74: 5342.

    Article  PubMed  CAS  Google Scholar 

  135. White, J.G., Amos, W.B. and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell. Biol. 105: 41.

    Article  PubMed  CAS  Google Scholar 

  136. Ying, H. and Xie, X.S., 2002, Probing single-molecule dynamics photon by photon. J. Chem. Phys. 117: 10965.

    Article  CAS  Google Scholar 

  137. Yuan, Z., Kardynal, B., Stevenson, R.M., Shields, A.J., Lobo, C.J., Cooper, K., Beattie, N.S., Ritchie, D.A. and Pepper, M, 2002, Electrically driven single-photon source, Science 295: 102.

    Article  PubMed  CAS  Google Scholar 

  138. Zander, C., Sauer, M., Drexhage, K.H., Ko, D.-S., Schulz, A., Wolfrum, J., Brand, L., Eggerling, C. and Seidel, C.A.M., 1996, Detection and characterisation of single molecules in aqueous solution, Appl. Phys. B 63: 517.

    CAS  Google Scholar 

  139. Zander, C, Drexhage, K.H., Han, K.-T., Wolfrum, J. and Sauer, M., 1998, Single-molecule counting and identification in a microcapillary, Chem. Phys. Lett. 286: 457.

    Article  CAS  Google Scholar 

  140. Zwiller, V., Blom, H., Jonsson, P., Panev, N., Jeppesen, S., Tsegaye, T., Goobar, E., Pisto, M.E., Samuelson, L. and Björk, G., 2001, Single quantum dots emit single photons at at time: Antibunching experiments, Appl. Phys. Lett. 78: 2476.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Becker, W., Bergmann, A. (2005). Multi-Dimensional Time-Correlated Single Photon Counting. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2005. Reviews in Fluorescence, vol 2005. Springer, Boston, MA. https://doi.org/10.1007/0-387-23690-2_4

Download citation

Publish with us

Policies and ethics