Skip to main content

Ophthalmic Glucose Monitoring Using Disposable Contact Lenses

  • Chapter
Reviews in Fluorescence 2005

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2005))

Abstract

As a common medical condition that produces excessive thirst, continuous urination and severe weight loss, Diabetes# has interested medical researchers for over three millennia. Unfortunately it wasn’t until the early 20th century that the prognosis for this condition became any better than it was 3000 years ago. Today, approximately 150 million people worldwide are affected by diabetes. With its prevalence still rising, diabetes still continues to fascinate, practitioners and researchers alike, by its elusive cause and its many manifestations

The term “Diabetes” was first used around 230 BC by Apollonius of Mephis, which in Greek means “to pass through” (Dia — through, betes — to go) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.10. References

  1. Principles of Diabetes Mellitus, edited by Leonid Poretsky, Kluwer Academic Plenum Publishers, Norwell Massachusetts, USA, 2002.

    Google Scholar 

  2. V. C. Medvei, The 18th Century and the beginning of the 19th Century, In: The history of clinical endocrinology: a comprehensive account of endocrinology from earliest times to present day, Parthenon Publishing, New York, 1993.

    Google Scholar 

  3. M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard and P. L. Robinson (1992). Non-invasive glucose monitoring in diabetic patients: A preliminary evaluation, Clin. Chem. 38, 1618–1622.

    PubMed  CAS  Google Scholar 

  4. H. M. Heise, R. Marbach, T. H. Koschinsky, and F. A. Gries (1994). Non-invasive blood glucose sensors based on near-infrared spectroscopy, Ann. Occup. Hyg., 18, 439–447.

    CAS  Google Scholar 

  5. W. F. March, B. Rabinovitch, R. Adams, J. R. Wise and M. Melton (1982). Ocular Glucose sensor, Trans. Am. Soc. Artif. Intern. Organs, 28, 232–235.

    PubMed  CAS  Google Scholar 

  6. B. Rabinovitch, W. F. March and R. L. Adams (1982). Non-invasive glucose monitoring of the aqueous humor of the eye, Part 1, Measurement of very small optical rotations, Diabetes Care, 5, 254–258.

    Article  PubMed  CAS  Google Scholar 

  7. G. M. Schier, R. G. Moses, I. E. T. Gan, and S. C. Blair (1988). An evaluation and comparison of reflolux Iiand Glucometer II, two new portable reflectance meters for capillary blood glucose determination, Diabetes Res. Clin. Pract., 4, 177–181.

    Article  PubMed  CAS  Google Scholar 

  8. W. Clarke, D. J. Becker, D. Cox, J. V. Santiago, N. H. White, J. Betschart, K. Eckenrode, L. A. Levandoski, E. A. Prusinki, L. M. Simineiro, A. L. Snyder, A. M. Tideman and T. Yaegar (1988). Evaluation of a new system for self blood glucose monitoring, Diabetes Res. Clin. Pract., 4, 209–214.

    Article  PubMed  CAS  Google Scholar 

  9. W. Trettnak and O. S. Wolfbeis (1989). Fully reversible fiber-optic glucose biosensor based on the intrinsic fluorescence of glucose-oxidase, Anal. Chim. Acta, 221,195–203.

    Article  CAS  Google Scholar 

  10. D. Meadows and J. S. Schultz (1988). Fiber optic biosensor based on fluorescence energy transfer, Talanta, 35, 145–150.

    Article  CAS  PubMed  Google Scholar 

  11. L. Tolosa, H. Malak, G. Rao, and J. R. Lakowicz (1997). Optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5, Sensors Actuators B., 45, 93–99.

    Article  Google Scholar 

  12. L. Tolosa, I. Gryczynski, L. R. Eichorn, J. D. Dattelbaum, F. N. Castellano, G. Rao and J. R. Lakowicz (1999). Glucose sensors for low cost lifetime-based sensing using a genetically engineered protein, Anal. Biochem., 267, 114–120.

    Article  PubMed  CAS  Google Scholar 

  13. S. D’Auria, N. Dicesare, Z. Gryczynski, I. Gryczynski, M. Rossi and J. R. Lakowicz (2000). A thermophilic apoglucose dehydrogenase as a nonconsuming glucose sensor, Biochem. Biophys Res. Commun., 274, 727–731.

    Article  PubMed  CAS  Google Scholar 

  14. R. Badugu, J. R. Lakowicz, and C. D. Geddes (2004). The non-invasive continuous monitoring of physiological glucose using a novel monosaccharide-sensing contact lens, Anal. Chem., 76, 610–618.

    Article  PubMed  CAS  Google Scholar 

  15. R. Badugu, J. R. Lakowicz, and C. D. Geddes (2003). A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring, J. Fluorescence, 13, 371–374.

    Article  CAS  Google Scholar 

  16. C. D. Geddes R. Badugu, and J. R. Lakowicz, (2004). Contact lenses may provide window to blood glucose, Biophotoincs international, February (2), 50–53.

    Google Scholar 

  17. R. Badugu, J. R. Lakowicz, and C. D. Geddes (2004). Ophthalmic glucose sensing: A novel monosaccharide sensing disposable and colorless contact lens, The Analyst, 129, 516–521

    Article  PubMed  CAS  Google Scholar 

  18. J. M. Sugihara and C. M. Bowman (1958). Cyclic Benzeneboronate Esters, J. Am. Chem. Soc., 80(10), 2443–2446.

    Article  CAS  Google Scholar 

  19. J. P. Lorand and J. O. Edwards (1959). Polyol Complexes and Structure of the Benzeneboronate Ion, J. Org. Chem., 24(6), 169–114.

    Article  Google Scholar 

  20. G. Springsteen and B. Wang (2002). A detailed examination of boronic acid-diol complexation Tetrahedron, 58(26), 5291–5300.

    Article  CAS  Google Scholar 

  21. T. D. James, K. R. A. S. Sandanayake and S. Shinkai, (1995). Chiral discrimination of monosaccharides using a fluorescent molecular sensor, Nature, 374, 345.

    Article  CAS  Google Scholar 

  22. J. C. Norrild and H. Eggert (1995). Evidence for monodentate and bidentate boronate complexes of glucose in the furanose form — application of (l)J(C-C)-coupling-constants as a structural probe, J. Am. Chem. Soc., 117(5), 1479–1484.

    Article  CAS  Google Scholar 

  23. H. Eggert, J. Frederiksen, C. Morin and J. C. Norrild (1999). A new glucose-selective fluorescent bisboronic acid. First report of strong alpha-furanose complexation in aqueous solution at physiological pH, J. Org. Chem., 64(11), 3846–3852.

    Article  CAS  Google Scholar 

  24. W. Yang, H. He, D. G. Drueckhammer (2001). Computer-guided design in molecular recognition: Design and synthesis of a glucopyranose receptor, Angew. Chem. Int. Ed., 40(9), 1714–1718.

    Article  CAS  Google Scholar 

  25. W. Wang, S. Gao, and B. Wang (1999). Building Fluorescent Sensors by Template Polymerization: The Preparation of a Fluorescent Sensor for D-Fructose, Org. Letts, 1(8) 1209–1212.

    Article  CAS  Google Scholar 

  26. S. Gao, W. Wang and B. Wang (2001). Building Fluorescent Sensors for Carbohydrates Using Template-Directed Polymerizations, Bioorg. Chem., 29, 308–320.

    Article  PubMed  CAS  Google Scholar 

  27. J. J. Lavigne, E. V. Anslyn (1999). Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages, Angew. Chem. Int. Ed., 38(24), 3666–3669.

    Article  CAS  Google Scholar 

  28. J. Yoon and A. W. Czarnik (1992). Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching, J. Am. Chem. Soc., 114, 5874–5875.

    Article  CAS  Google Scholar 

  29. B. D. Smith, S. J. Gardiner, T. A. Munro, M. F. Paugam and J. A. Riggs (1998). Facilitated transport of carbohydrates, catecholamines, and amino acids through liquid and plasticized organic membranes, J. Incl. Phenom. Mol. Recogn. Chem. 32, 121–131.

    Article  CAS  Google Scholar 

  30. S. Soundararajan, M. Badawi, C. M. Kohlrust, J. H. Hagerman (1989). Boronic acids for affinity — chromatography — spectral methods for determinations of ionization and diol-binding constants, Anal. Biochem., 178, 125–134.

    Article  PubMed  CAS  Google Scholar 

  31. T. D. James, K. R. A. S., and S. Shinkai (1994). A glucose-selective molecular fluorescence sensor, Angew, Chem. Int. Ed., 33(21), 2207–2209.

    Article  Google Scholar 

  32. T. D. James, K. R. A. S. Sandanayake, R. Iguchi, and S. Shinkai (1995). Novel saccharide-photoinduced electron-transfer sensors based on the interaction of boronic acid and amine, J. Am. Chem. Soc., 117(35), 8982–8987.

    Article  CAS  Google Scholar 

  33. N. Dicesare and J. R. Lakowicz (2001). Evaluation of two synthetic glucose probes for fluorescence-lifetime based sensing, Anal. Biochem., 294, 154–160.

    Article  PubMed  CAS  Google Scholar 

  34. N. Dicesare and J. R. Lakowicz (2001). Wavelength-ratiometric probes for saccharides based on donor-acceptor diphenylpolyenes, J. Photochem. Photobiol. A: Chem., 143, 39–47.

    Article  CAS  Google Scholar 

  35. N. Dicesare and J. R. Lakowicz (2001). New color chemosensors for monosaccharides based on Azo dyes, Org. Lett., 3(24), 3891–3893.

    Article  PubMed  CAS  Google Scholar 

  36. N. Dicesare and J. R. Lakowicz (2002). Chalcone-analogue fluorescent probes for saccharides signaling using the boronic acid group, Tet. Lett., 43, 2615–2618.

    Article  CAS  Google Scholar 

  37. V. V. Karnati, X. Gao, S. Gao, W. Yang, W. Ni, S. Sankar and B. Wang (2002). A glucose-selective fluorescence sensor based on boronic acid-diol recognition, Bioorg. Med. Chem. Lett., 12, 3373–3377.

    Article  PubMed  CAS  Google Scholar 

  38. N. Dicesare and J. R. Lakowicz (2002). Charge transfer fluorescent probes using boronic acids for monosaccharide signaling, J. Biomedical Optics, 7(4), 538–545.

    Article  CAS  Google Scholar 

  39. R. Badugu, J. R. Lakowicz, C. D. Geddes (2004). Fluorescence Sensors for Monosaccharides Based on the 6-Methylquinolinium Nucleus and Boronic Acid Moiety: Application to Ophthalmic Diagnostics., Talanta,-In press.

    Google Scholar 

  40. R. Badugu, J. R. Lakowicz, C. D. Geddes (2004). Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: Progress towards noninvasive and continuous glucose monitoring, Bioorg. Med. Chem. Manuscript Submitted.

    Google Scholar 

  41. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd Edition, Kluwer/Academic Plenum Publishers, New York, 1997.

    Google Scholar 

  42. N. J. Turro, B. H. Baretz and P. I. Kuo (1984). Photoluminescence probes for the investigation of interactions between sodium dodecylsulfate and water-soluble polymers, Macromolecules, 17(7), 1321–1324.

    Article  CAS  Google Scholar 

  43. K. Kalyanasundaram and J. K. Thomas (1977). Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, J. Am. Chem. Soc., 99(7), 2039–2044.

    Article  CAS  Google Scholar 

  44. N. Dicesare, J. R. Lakowicz (2001). Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescence probes for saccharides, J. Phys. Chem. A, 105(28), 6834–6840.

    Article  CAS  Google Scholar 

  45. C. D. Geddes (2001). Optical halide sensing using fluorescence quenching: theory, simulations and applications-a review. Meas. Sci. and Tech., 12(9), R53.

    Article  CAS  Google Scholar 

  46. O. S. Wolfbeis, E. Urbano (1982). J. Heterocyclic Chem., 19, 841–843.

    Article  CAS  Google Scholar 

  47. C. D. Geddes, K. Apperson, J. Karolin, D. J. S. Birch (2001). Chloride sensitive probes for biological applications, Dyes & Pigments, 48, 227–231.

    Article  CAS  Google Scholar 

  48. M. A. Fox, M. Chanon, Eds. Photoinduced Electron Transfer; Elsevier: New York, 1998, Parts A-D.

    Google Scholar 

  49. G. J. Kavarnos, Fundamentals of Photoinduced Electron Transfer; VCH: New York, 1993.

    Google Scholar 

  50. N. J. Van Haeringen (1981). Climical Biochemistry in Tears, Survey of Ophthalmology, 26(2), 84–96

    Article  PubMed  Google Scholar 

  51. N. Chandrasekharan and L. Kelly, Progress towards fluorescent molecular thermometers, in Reviews in Fluorescence 2003, edited by C. D. Geddes and J. R. Lakowicz, Kluwer Academic Plenum Publishers, New York, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Badugu, R., Lakowicz, J.R., Geddes, C.D. (2005). Ophthalmic Glucose Monitoring Using Disposable Contact Lenses. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2005. Reviews in Fluorescence, vol 2005. Springer, Boston, MA. https://doi.org/10.1007/0-387-23690-2_15

Download citation

Publish with us

Policies and ethics