Skip to main content

Organized Assemblies Probed by Fluorescence Spectroscopy

  • Chapter

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2005))

Abstract

Self-organized assemblies originate in an aqueous solution because of the tendency of a biological macromolecule to expose its hydrophilic part to water and to keep the hydrophobic portion away from water.1 Examples of such assemblies range from the unique biologically active structure (native form) of a protein and the DNA double helix to many supramolecules, guest-host complexes and aggregates of amphiphilic molecules (e.g. lipids, micelles). Structures of some organized assemblies are shown in Fig. 1.1. They play a key role in molecular recognition, bio-catalysis, targeted drug delivery,2 and in many emerging areas such as, dynamic combinatorial chemistry,3 and adaptive chemistry.4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.7. References

  1. L. Maibaum, A. R. Dinner, D. Chandler, Micelle formation and the hydrophobic effect, J. Phys. Chem. B 104, (2004) (in press).

    Google Scholar 

  2. A. Muller, D. F. O’Brien, Supramolecular materials via polymerization of mesophases of hydrated amphiphiles, Chem. Rev. 102(3), 727–758 (2002).

    Article  CAS  Google Scholar 

  3. J. R. Nitschke, J.-M. Lehn, Self-organization by selection: Generation of a metallosupramolecular grid architecture by selection of components in a dynamic library of ligands, Proc. Natl. Acad. Sci. USA 100(21), 11970–11974 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. S. Fernandez-Lopez, H.-S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, M. R. Ghadiri, Antibacterial agents based on the cyclic D,L-α-peptide architecture, Nature 412(6845), 452–456 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. S. W. Rick, S. J. Stuart, B. J. Berne, Dynamical fluctuating charge force fields: applications to liquid water, J. Chem. Phys. 101(7), 6141–6156 (1994).

    Article  CAS  Google Scholar 

  6. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer/Plenum, New York, 1999).

    Google Scholar 

  7. K. Bhattacharyya, Study of organized media using time-resolved fluorescence spectroscopy, J. Fluorescence 11(3), 167–176 (2001).

    Article  CAS  Google Scholar 

  8. T. Simonson, G. Archontis, M. Karplus, Free energy simulations come of age: Protein-ligand recognition, Acc. Chem. Res. 35(6), 430–437 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. A. Warshel, Molecular dynamic simulations of biological reactions, Acc. Chem. Res. 35(6), 385–395 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. T. Simonson, Gaussian fluctuations and linear response in an electron transfer protein, Proc. Natl. Acad. Sc. USA 99(10), 6544–6549 (2002).

    Article  CAS  Google Scholar 

  11. B. Bagchi, Water solvation dynamics in the bulk and in the hydration layer of protein and self-assemblies, Annu. Rep. Prog. Chem., Sect. C. 99, 127–175 (2003).

    Article  CAS  Google Scholar 

  12. K. Bhattacharyya, Solvation dynamics and proton transfer in supramolecular assemblies, Acc. Chem. Res. 36(2), 95–101 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. N. Nandi, K. Bhattacharyya, B. Bagchi, Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems, Chem. Rev. 100(6), 2013–2045 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. K. Bhattacharyya, B. Bagchi, Slow dynamics of constrained water in complex geometries, J. Phys. Chem. A 104(46), 10603–10613 (2000).

    Article  CAS  Google Scholar 

  15. E. L. Quitevis, A. H. Marcus, M. D. Fayer, Dynamics of ionic lipophilic probes in micelles: picosecond fluorescence depolarization measurements, J. Phys. Chem. 97(21), 5762–5769 (1993).

    Article  CAS  Google Scholar 

  16. N. W. Wittouck, R. M. Negri, F. C. De Schryver, AOT reversed micelles investigated by fluorescence anisotropy of cresyl violet, J. Am. Chem. Soc. 116(23), 10601–10611 (1994).

    Article  CAS  Google Scholar 

  17. N. C. Maiti, M. M. G. Krishna, P. J. Britto, N. Periasamy, Fluorescence dynamics of dye probes in micelles, J. Phys. Chem. B 101(51), 11051–11060 (1997).

    Article  CAS  Google Scholar 

  18. S. Sen, D. Sukul, P. Dutta, K. Bhattacharyya, Fluorescence anisotropy decay in-polymer-surfactant aggregates, J. Phys. Chem. A 105(32), 7495–7500 (2001).

    Article  CAS  Google Scholar 

  19. For instance, D1 of amino benzoic acid is 8 × 10−10 m2/s−1; Handbook of Chemistry and Physics, (CRC Press, Boca Raton, Fl, 1990) p. 6–151.

    Google Scholar 

  20. Ref 6, p. 211–233.

    Google Scholar 

  21. M. Maroncelli, The dynamics of solvation in polar liquids, J. Mol. Liq. 57, 1–37 (1993).

    Article  CAS  Google Scholar 

  22. J. Barthel, K. Bachuber, R. Buchner, H. Hetzenauer, Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols, Chem. Phys. Lett. 165(4), 369–373 (1990).

    Article  CAS  Google Scholar 

  23. U. Kaatze, Dielectric relaxation of H2O/D2O mixtures, Chem. Phys. Lett. 203(1), 1–4 (1993).

    Article  CAS  Google Scholar 

  24. W. Jarzeba, G. C. Walker, A. E. Johnson, M. A. Kahlow, P. F. Barbara, Femtosecond microscopic solvation dynamics in aqueous solution, J. Phys. Chem. 92(25), 7039–7041 (1988).

    Article  CAS  Google Scholar 

  25. R. Jimenez, G. R. Fleming, P. V. Kumar, M. Maroncelli, Femtosecond solvation dynamics in water, Nature 369(6480), 471–473 (1994).

    Article  CAS  Google Scholar 

  26. N. Nandi, S. Roy, B. Bagchi, Ultrafast solvation dynamics in water: Isotope effects and comparison with experimental results, J. Chem. Phys. 102(3), 1390–1397 (1995).

    Article  CAS  Google Scholar 

  27. E. H. Grant, R. J. Sheppard, G. P. South, Dielectric Behavior of Biological Molecules (Clarendon, Oxford, 1978).

    Google Scholar 

  28. Protein-Solvent Interactions, edited by R. B. Gregory (Marcel Dekker, New York, 1995).

    Google Scholar 

  29. G. Otting, E. Liepinsh, K. Wüthrich, Protein hydration in aqueous solution, Science 254(5034), 974–980 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. K. Modig, E. Liepinsh, G. Otting, B. Halle, Dynamics of protein and peptide hydration, J. Am. Chem. Soc. 126(1), 102–114 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. A. Maitra. Determination of size parameters of water-Aerosol OT-oil reverse micelles from their nuclear magnetic resonance data, J. Phys. Chem. 88(21), 5122–5125 (1984).

    Article  CAS  Google Scholar 

  32. S. P. Moulik, G. C De, B. B. Bhowmik, A. K. Panda, Physicochemical studies on microemulsions. 6. Phase behavior, dynamics of percolation, and energetics of droplet clustering in water/AOT/n-heptane system influenced by additives (sodium cholate and sodium salicylate), J. Phys. Chem. B 103(34), 7122–7129 (1999).

    Article  CAS  Google Scholar 

  33. S. Sen, D. Sukul, P. Dutta, K. Bhattacharyya, Solvation dynamics in the water pool of aerosol sodium dioctylsulfosuccinate microemulsion. Effect of polymer, J. Phys. Chem. A 106(25), 6017 (2002).

    Article  CAS  Google Scholar 

  34. J. Zhang, F.V. Bright, Nanosecond reorganization of water within the interior of reversed micelles revealed by frequency-domain fluorescence spectroscopy, J. Phys. Chem. 95(20), 7900–7907 (1991).

    Article  CAS  Google Scholar 

  35. N. Sarkar, K. Das, S. Das, A. Datta, K. Bhattacharyya, Solvation dynamics of coumarin 480 in reverse micelles. Slow relaxation of water molecules, J. Phys. Chem. 100(25), 10523–10527 (1996).

    Article  CAS  Google Scholar 

  36. R. E. Riter, D. M. Willard, N. E. Levinger, Water immobilization at surfactant interfaces in reverse micelles, J. Phys. Chem. B 102(15), 2705–2714 (1998).

    Article  CAS  Google Scholar 

  37. K. Bhattacharyya, K. Hara, N. Kometani, Y. Uozu, O. Kajimoto, Solvation dynamics in a microemulsion in near-critical propane, Chem. Phys. Lett. 361(1–2), 136–142 (2002).

    Article  CAS  Google Scholar 

  38. P. Dutta, P. Sen, S. Mukherjee, A. Haider, K. Bhattacharyya, Solvation dynamics in the water pool of an aerosol-OT microemulsion. Effect of sodium salicylate and sodium cholate, J. Phys. Chem. B 107(39), 10815–10822 (2003).

    Article  CAS  Google Scholar 

  39. M.-L. Horng, J. A. Gardecki, M. Maroncelli, Rotational dynamics of coumarin 153: Time-dependent friction, dielectric friction, and other non-hydrodynamic effects, J. Phys. Chem. A 101(6), 1030–1047 (1997).

    Article  CAS  Google Scholar 

  40. C. Ju, C. Bohnne, Dynamics of probe complexation to bile salt aggregates, J. Phys. Chem. 100(9), 3847–3854 (1996).

    Article  CAS  Google Scholar 

  41. A. P. Demchenko, The red-edge effects: 30 years of exploration, Luminescence 17(1), 19–42 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. H. Raghuraman, A. Chattopadhyay, Organization and dynamics of melittin in environments of graded hydration. A fluorescence approach, Langmuir 19(24), 10332–10341 (2003).

    Article  CAS  Google Scholar 

  43. T. Satoh, H. Okuno, K. Tominaga, K. Bhattacharyya, Excitation wavelength dependence of solvation dynamics in a water pool of a reverse micelle, Chemistry Letters (submitted).

    Google Scholar 

  44. S. Senapati, A. Chandra, Dielectric constant of water confined in a nanocavity, J. Phys. Chem. B 105(22), 5106–5109 (2001).

    Article  CAS  Google Scholar 

  45. J. Faeder, M. V. Albert, B. M. Ladanyi, Molecular dynamics simulations of the interior of aqueous reverse micelles: A comparison between sodium and potassium counterions, Langmuir 19(6), 2514–2520 (2003).

    Article  CAS  Google Scholar 

  46. S. Senapati, M. L. Berkowitz, Water structure and dynamics in phosphate fluorosurfactant based reverse micelle: A computer simulation study, J. Chem. Phys. 118(4), 1937–1944 (2003).

    Article  CAS  Google Scholar 

  47. S. S. Berr, Solvent isotope effects on alkytrimethylammonium bromide micelles as a function of alkyl chain length, J. Phys. Chem. 91(18), 4760–4765 (1987).

    Article  CAS  Google Scholar 

  48. N. Sarkar, A. Datta, S. Das, K. Bhattacharyya, Solvation dynamics of coumarin 480 in micelles, J. Phys. Chem. 100(38), 15483–15486 (1996).

    Article  CAS  Google Scholar 

  49. K. Hara, H. Kuwabara, O. Kajimoto, Pressure effect on solvation dynamics in micellar environment, J. Phys. Chem. A, 105(30), 7174–7179 (2001).

    Article  CAS  Google Scholar 

  50. S. Sen, P. Dutta, S. Mukherjee, K. Bhattacharyya, Solvation dynamics in bile salt aggregates, J. Phys. Chem. B 106(32), 7745–7750 (2002).

    Article  CAS  Google Scholar 

  51. P. Sen, S. Mukherjee, A. Haider, K. Bhattacharyya, Temperature dependence of solvation dynamics in a micelle. 4-Aminophtalimide in triton X-100, Chem. Phys. Lett. 385(5–6), 357–361 (2004).

    Article  CAS  Google Scholar 

  52. S. Pal, S. Balasubramanian, B. Bagchi, Identity, energy, and environment of interfacial water molecules in a micellar solution, J. Phys. Chem. B 107(22), 5194–5202 (2003).

    Article  CAS  Google Scholar 

  53. S. Balasubramanian, B. Bagchi, Slow solvation dynamics near an aqueous micellar surface, J. Phys. Chem. B 105(50), 12529–12533 (2001).

    Article  CAS  Google Scholar 

  54. S. Balasubramanian, S. Pal, B. Bagchi, Hydrogen bond dynamics near a micellar surface: origin of the universal slow relaxation at complex aqueous interfaces, Phys. Rev. Lett. 89(11), 115505–1 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. D. Mandal, S. Sen, T. Tahara, K. Bhattacharyya, Femtosecond study of solvation dynamics of DCM in micelles, Chem. Phys. Lett. 359(1–2), 77–82 (2002).

    Article  CAS  Google Scholar 

  56. C. D. Bruce, S. Senapati, M. L. Berkowitz, L. Perera, M. D. E. Forbes, Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: The behavior of water, J. Phys. Chem. B 106(42), 10902–10907 (2002).

    Article  CAS  Google Scholar 

  57. S. Vajda, R. Jimenez, S. J. Rosenthal, V. Fidler, G. R. Fleming, E. W. Castner Jr., Femtosecond to nanosecond solvation dynamics in water and inside the γ-cyclodextrin cavity, J. Chem. Soc. Faraday Trans. 91(5), 867–873 (1995).

    Article  CAS  Google Scholar 

  58. S. Sen, D. Sukul, P. Dutta, K. Bhattacharyya, Slow solvation dynamics of dimethylformamide in a nanocavity. 4-Aminophthalimide in β-cyclodextrin, J. Phys. Chem. A 105(47), 10635–10639 (2001).

    Article  CAS  Google Scholar 

  59. N. Nandi, B. Bagchi, Ultrafast solvation dynamics of an ion in the γ-cyclodextrin cavity: Role of restricted environment, J. Phys. Chem. 100(33), 13914–13919 (1996).

    Article  CAS  Google Scholar 

  60. Hydration Processes in Biology: Theoretical and Experimental Approaches, Edited by M.-C. Bellisent-Funnel (IOS Press, Amsterdam, 1999).

    Google Scholar 

  61. Hydration Processes in Biological and Macromolecular Systems, Faraday Discuss. 103(1), 1–394 (1996).

    Google Scholar 

  62. N. Nandi, B. Bagchi, Dielectric relaxation of biological water, J. Phys. Chem. B 101(50), 10954–10962 (1997).

    Article  CAS  Google Scholar 

  63. P. Marzola, E. Gratton, Hydration and protein dynamics: frequency domain fluorescence spectroscopy of proteins in reverse micelles, J. Phys. Chem. 95(23), 9488–9495 (1991).

    Article  CAS  Google Scholar 

  64. D. Toptygin, R. S. Savichenko, N. D. Meadow, L. Brand, Homogeneous spectrally-and time-resolved fluorescence emission from single-tryptophan mutants of IIAGlc protein, J. Phys. Chem. B 105(10). 2043–2055 (2001).

    Article  CAS  Google Scholar 

  65. S. K. Pal, A. H. Zewail, Dynamics of water in molecular recognition, Chem. Rev. 104(4), 2099–2124 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. L. P. McMahon, H. T. Yu, M. A. Vela, G. A. Morales, L. Shui, F. R. Fronczek, M. L. McLaughlin, M. D. Barkley, Conformer interconversion in the excited state of constrained tryptophan derivatives, J. Phys. Chem. B 99(16), 3269–3280 (1997).

    Article  Google Scholar 

  67. A. G. Szabo, D. M. Rayner, Fluorescence decay of tryptophan conformers in aqueous solution, J. Am. Chem. Soc. 102(2), 554–563 (1980).

    Article  CAS  Google Scholar 

  68. J. S. Lundgren, M. P. Heitz, F. V. Bright, Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles, Anal. Chem. 67(20), 3775–3781 (1995).

    Article  PubMed  CAS  Google Scholar 

  69. D. Mandal, S. Sen, D. Sukul, K. Bhattacharyya, A. K. Mandal, R. Banerjee and S. Roy, Solvation dynamics of a probe covalently bound to a protein and in AOT microemulsion. 4 (N-bromoacetylamino)-phthalimide, J. Phys. Chem. B 106(41), 10741–10747 (2002).

    Article  CAS  Google Scholar 

  70. L. D. Weber, A. Tulinsky, J. D. Johnson, M. A. El-Bayoumi, Expression of functionality of α-chymotrypsin. The structure of a fluorescent probe-α-chymotrypsin complex and the nature of its pH dependence, Biochemistry 18(7), 1297–1303 (1979).

    Article  PubMed  CAS  Google Scholar 

  71. T. Imoto, L. S. Forster, J. A. Rupley, F. Tanaka, Fluorescence of lysozyme: Emission from tryptophan residues 62 and 108 and energy migration, Proc. Natl. Acad. Sci. USA 69(5), 1151–1155 (1971).

    Article  Google Scholar 

  72. J. F. Baugher, L. I. Grossweiner, J. Lewis, Intramolecular energy transfer in lysozyme-eosin complex, J. Chem. Soc. Faraday Trans. II 70, 1389–1398 (1974).

    Article  CAS  Google Scholar 

  73. J. S. Bashkin, G. McLedon, S. Mukamel, J. Marohn, Influence of medium dynamics on solvation and charge separation reactions: comparison of a simple alcohol and a protein “solvent,” J. Phys. Chem. 94(12), 4757–4761 (1990).

    Article  CAS  Google Scholar 

  74. D. W. Pierce, S. G. Boxer, Dielectric relaxation in a protein matrix, J. Phys. Chem. 96(13), 5560–5566 (1992).

    Article  CAS  Google Scholar 

  75. S. K. Pal, D. Mandal, D. Sukul, S. Sen, K. Bhattacharyya, Solvation dynamics of DCM in human serum albumin, J. Phys. Chem. B 105(7), 1438–1441 (2001).

    Article  CAS  Google Scholar 

  76. X. J. Jordanides, M. J. Lang, X. Song, G. R. Fleming, Solvation dynamics in protein environments studied by photon echo spectroscopy, J. Phys. Chem. B 103(37), 7995–8005 (1999).

    Article  CAS  Google Scholar 

  77. P. Dutta, P. Sen, A. Haider, S. Mukherjee, S. Sen, K. Bhattacharyya, Solvation dynamics in a protein-surfactant complex, Chem. Phys. Lett. 377(1–2), 229–235 (2003).

    Article  CAS  Google Scholar 

  78. P. Sen, S. Mukherjee, P. Dutta, A. Haider, D. Mandal, R. Banerjee, S. Roy, K. Bhattacharyya, Solvation dynamics in the molten globule state of a protein, J. Phys. Chem. 107(51), 14563–14568 (2003).

    CAS  Google Scholar 

  79. A. Warshel, Computer simulations of enzyme catalysis: Methods, progress, and insights, Annu Rev Biophys Biomol. Struct. 32, 425–443 (2003).

    Article  PubMed  CAS  Google Scholar 

  80. M. Levitt, R. Sharon, Accurate simulation of protein dynamics in solution, Proc. Natl. Acad. Sci. USA 85(20), 7557–7561 (1988).

    Article  PubMed  CAS  Google Scholar 

  81. V. Makrov, B. M. Petit, Solvation and hydration of protein and nucleic acids: A theoretical view of simulation and experiment, Acc. Chem. Res. 35(6), 376–384 (2002).

    Article  CAS  Google Scholar 

  82. P. Dutta, P. Sen, S. Mukherjee, K. Bhattacharyya, Solvation dynamics in DMPC vesicle in the presence of a protein, Chem. Phys. Lett. 382(3–4), 426–433 (2003).

    Article  CAS  Google Scholar 

  83. S. K. Pal, J. Peon, B. Bagchi, A. H. Zewail, Biological water: Femtosecond dynamics of macromolecular hydration, J. Phys. Chem. 107(48), 12376–12395 (2003).

    Google Scholar 

  84. E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, M. A. Berg, Complex local dynamics in DNA on the picosecond and nanosecond time scales, Phys. Rev. Lett. 88(15), 158101–1 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. L. A. Gearheart, M. M. Somoza, W. E. Rivers, C. J. Murphy, R. S. Coleman, M. A. Berg, Sodium-ion binding to DNA: Detection by ultrafast time-resolved Stokes-shift spectroscopy, J. Am. Chem. Soc. 125(39), 11812–11813 (2003).

    Article  PubMed  CAS  Google Scholar 

  86. S. K. Pal, L. Zhao, T. Xia, A. H. Zewail, Site-and sequence-selective ultrafast hydration of DNA, Proc. Natl. Acad. Sci. USA 100(24), 13746–13751 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. N. Deo, S. Jockusch, N. J. Turro, P. Somasundaran, Surfactant interactions with zein protein, Langmuir 19(12), 5083–5088 (2003).

    Article  CAS  Google Scholar 

  88. E. A. Lissi, E. Abuin, Aggregation numbers of sodium dodecyl sulfate micelles formed on poly(ethylene oxide) and poly(vinyl pyrrolidone) chains, J. Coll. Inter. Sci. 105(1), 1–6 (1985).

    Article  CAS  Google Scholar 

  89. R. Narenberg, J. Kliger, D. Horn, Study of the interaction between poly(vinyl pyrrolidone) and sodium dodecyl sulfate by fluorescence correlation spectroscopy, Angew. Chem. Int. Ed. Engl. 38(11), 1626–1629 (1999).

    Article  Google Scholar 

  90. S. Sen, D. Sukul, P. Dutta, K. Bhattacharyya, Solvation dynamics in aqueous polymer solution and in polymer-surfactant aggregate, J. Phys. Chem. B 106(15), 3763–3769 (2002).

    Article  CAS  Google Scholar 

  91. P. Dutta, S. Sen, S. Mukherjee, K. Bhattacharyya, Solvation dynamics of TNS in polymer (PEG)-surfactant (SDS) aggregate, Chem. Phys. Lett. 359(1–2), 15–21 (2002).

    Article  CAS  Google Scholar 

  92. P. Dutta, D. Sukul, S. Sen, K. Bhattacharyya, Solvation dynamics of 4-aminophthalimide in a polymer (PVP)-surfactant (SDS) aggregate, Phys. Chem. Chem. Phys. 5(21), 4875–4879 (2003).

    Article  CAS  Google Scholar 

  93. L. Frauchiger, H. Shirota, K. E. Uhrich, E. W. Castner Jr., Dynamic fluorescence probing of the local environments within amphiphilic starlike macromolecules, J. Phys. Chem. B 106(30), 7463–7468 (2002).

    Article  CAS  Google Scholar 

  94. R. A. Farrrer, J. T. Fourkas, Orientational dynamics of liquids confined in nanoporous sol-gel glasses studied by optical Kerr effect spectroscopy, Acc. Chem. Res. 36(8), 605–612 (2003).

    Article  CAS  Google Scholar 

  95. S. K. Pal, D. Sukul, D. Mandal, S. Sen, K. Bhattacharyya, Solvation dynamics of coumarin 480 in sol-gel matrix, J. Phys. Chem. B 104(12) 2613–2616 (2000).

    Article  CAS  Google Scholar 

  96. R. Bauman, C. Ferrante, F. W. Deeg, C. Brauchle, Solvation dynamics of nile blue in ethanol confined in porous sol-gel glasses, J. Chem. Phys. 114(13), 5781–5791 (2001).

    Article  CAS  Google Scholar 

  97. A. Haider, S. Sen, A. Das Burman, A. Patra, K. Bhattacharyya, Solvation dynamics in dimyristoyl-phosphatidylcholine entrapped inside a sol-gel matrix, J. Phys. Chem. B 108(7), 2309–2312 (2004).

    Article  CAS  Google Scholar 

  98. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev. 94(8), 2319–2358 (1994).

    Article  CAS  Google Scholar 

  99. Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures, Chem. Rev. 103(10), 3899–4032 (2003).

    Article  PubMed  Google Scholar 

  100. S. Techert, F. Schotte, M. Wulff, Picosecond X-ray diffraction probed transient structural changes in organic solids, Phys. Rev. Lett. 86(10), 2030–2033 (2001).

    Article  PubMed  CAS  Google Scholar 

  101. K. Bhattacharyya, M. Chowdhury, Environmental and magnetic field effects on exciplex and twisted charge transfer emission, Chem. Rev. 93(1), 507–535 (1993).

    Article  CAS  Google Scholar 

  102. J. M. Hicks, M. T. Vandersall, Z. Babarogic, K. B. Eisenthal, The dynamics of barrier crossings in solution: The effect of a solvent polarity-dependent barrier, Chem. Phys. Lett. 116(1), 18–24 (1985).

    Article  CAS  Google Scholar 

  103. N. Sarkar, K. Das, D. Nath, K. Bhattacharyya, Twisted intramolecular charge transfer processes of nile red in homogeneous solutions and in zeolite, Langmuir 10(1), 326–329 (1994).

    Article  CAS  Google Scholar 

  104. A. Datta, D. Mandal, S. K. Pal, K. Bhattacharyya, Intramolecular charge transfer in confined systems. Nile red in reverse micelles, J. Phys. Chem. B 101(49), 10221–10225 (1997).

    Article  CAS  Google Scholar 

  105. A. Nag, K. Bhattacharyya, Twisted intramolecular charge transfer emission of dimethyl-aminobenzonitrile in α-cyclodextrin cavities, Chem. Phys. Lett. 151(4–5), 474–476 (1988).

    Article  CAS  Google Scholar 

  106. A. Nag, R. Dutta, N. Chattopadhyay, K. Bhattacharyya, Effect of size of cyclodextrin cavity on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile in β-cyclodextrin, Chem. Phys. Lett. 157(1–2), 83–86 (1989).

    Article  Google Scholar 

  107. A. Douhal, Ultrafast guest dynamics in cyclodextrin nanocavities, Chem. Rev. 104(4), 1955–1976 (2004).

    Article  PubMed  CAS  Google Scholar 

  108. T. A. Fayed, J. A. Organero, I. Garcia-Ochoa, L. Tormo, A. Douhal, Ultrafast twisting motions and intramolecular charge-transfer reaction in a cyanine dye trapped in molecular nanocavities, Chem. Phys. Lett. 364(1–2), 108–114 (2002).

    Article  CAS  Google Scholar 

  109. L. M. Tolbert, K. M. Solnstev, Excited-state proton transfer: From constrained systems to “super” photoacids to superfast proton transfer. Acc. Chem. Res. 35(1), 19–27 (2002).

    Article  PubMed  CAS  Google Scholar 

  110. M. Saeki, S.-I. Ishiuchi, M. Sakai. M. Fuji. Structure of l-naphthol:alcohol clusters studied by IR dip spectroscopy and ab-initio molecular orbital calculations, J. Phys. Chem. A 105(44), 10045–10053 (2001).

    Article  CAS  Google Scholar 

  111. J. E. Hansen, E. Pines, G. R. Fleming, Excited state proton transfer in 1-aminopyrene complexed with β-cyclodextrin, J. Phys. Chem. 96(17), 6904–6910 (1992).

    Article  CAS  Google Scholar 

  112. D. Mandal, S. K. Pal, K. Bhattacharyya, Excited state proton transfer of 1-naphthol in micelles. J. Phys. Chem. A 102(48), 9710–9714 (1998).

    Article  CAS  Google Scholar 

  113. P. Dutta, A. Haider, S. Mukherjee, P. Sen, S. Sen, K. Bhattacharyya, Excited state proton transfer of 1-naphthol in a hydroxypropylcellulose/sodium dodecyl sulfate system, Langmuir 18(21), 7867–7871 (2002).

    Article  CAS  Google Scholar 

  114. B. Cohen, D. Huppert, K. M. Solnstev, Y. Tsfadia, E. Nachliel, M. Gutman, Excited state proton transfer in reverse micelles, J. Am. Chem. Soc. 124(25), 7539–7547 (2002).

    Article  PubMed  CAS  Google Scholar 

  115. J. A. Organero, A. Douhal, Confinement effects on the photorelaxation of a proton-transfer phototautomer, Chem. Phys. Lett. 373(3–4), 426–431 (2003).

    Article  CAS  Google Scholar 

  116. R. A. Marcus, Electron transfer reactions in chemistry: Theory and experiments (Nobel lecture), Angew. Chem. Int. ed. Engl. 32(8), 1111–1222 (1993).

    Article  Google Scholar 

  117. G. J. Kavaranos, Fundamentals of Photoinduced Electron transfer (VCH, New York, 1993).

    Google Scholar 

  118. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, J. R. Miller, Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions, J. Phys. Chem. 90(16), 3673–3683 (1986).

    Article  CAS  Google Scholar 

  119. S. K. Pal, D. Mandal, D. Sukul, K. Bhattacharyya, Photoinduced electron transfer between dimethyl aniline and oxazine 1 in micelles, Chem. Phys. 249(1), 63–71 (1999).

    Article  CAS  Google Scholar 

  120. H. L. Tavernier, F. Laine, M. D. Fayer, Photoinduced intermolecular electron transfer in micelles: Dielectric and structural properties of micelle headgroup regions, J. Phys. Chem. A 105(39). 8944–8957 (2001).

    Article  CAS  Google Scholar 

  121. M. Kumbhakar, S. Nath, H. Pal, A. V. Sapre, T. Mukherjee, Photoinduced electron transfer from aromatic amines to coumarin dyes in sodium dodecyl sulfate micellar solutions, J. Chem. Phys. 119(1), 388–399 (2003).

    Article  CAS  Google Scholar 

  122. D. Chakraborty, A. Chakrabarty, D. Seth, N. Sarkar, Photoinduced electron transfer between coumarin dyes and electron donating solvents in cetyltrimethyl ammonium bromide micelles: Evidence for Marcus inverted region, Chem. Phys. Lett. 382(5–6), 508–517 (2003).

    Article  CAS  Google Scholar 

  123. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures in Physics (Addison-Wesley, MA, 1963) Vol. 1, p. 3.6.

    Google Scholar 

  124. M. Karplus, Molecular Dynamics Simulations of Biomolecules (guest editorial), Acc. Chem Res. 35(6), 321–323 (2002).

    Article  PubMed  CAS  Google Scholar 

  125. Ref. 6, p. 233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bhattacharyya, K. (2005). Organized Assemblies Probed by Fluorescence Spectroscopy. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2005. Reviews in Fluorescence, vol 2005. Springer, Boston, MA. https://doi.org/10.1007/0-387-23690-2_1

Download citation

Publish with us

Policies and ethics