Melioidosis and Glanders as Possible Biological Weapons

  • David Allan Brett Dance
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)


Endemic Area Torres Strait Island Capsular Polysaccharide Splenic Abscess Biological Weapon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbink, F.C., Orendi, J.M., and de Beaufort, A.J. (2001). Mother-to-child transmission of Burkholderia pseudomallei. N. Engl. J. Med. 344:1171–1172.PubMedCrossRefGoogle Scholar
  2. Achana, V., Silpapojakul, K., Thininta, W., and Kalnaowakul, S. (1985). Acute Pseudomonas pseudomallei pneumonia and septicemia following aspiration of contaminated water: a case report. Southeast Asian J. Trop. Med. Public Health 16:500–504.PubMedGoogle Scholar
  3. Ahmed, K., Encisco, H.D.R., Masaki, H., Tao, M., Omori, A., Tharavichikul, P., and Nagatake, T. (1999). Attachment of Burkholderia pseudomallei to pharyngeal epithelial cells: a highly pathogenic bacteria with low attachment ability. Am. J. Trop. Med. Hyg. 60:90–93.PubMedGoogle Scholar
  4. Alibek, K., and Handelman, S. (1999). Biohazard. Random House, New York.Google Scholar
  5. Al Izzi, S.A., and Al Bassam, L.S. (1989). In vitro susceptibility of Pseudomonas mallei to antimicrobial agents. Comp. Immunol. Microbiol. Infect. Dis. 12:5–8.CrossRefGoogle Scholar
  6. Amemiya, K., Bush, G.V., DeShazer, D., and Waag, D.M. (2002). Nonviable Burkholderia mallei induces a mixed Th1-and Th2-like cytokine response in BALB/c mice. Infect. Immun. 70:2319–2325.PubMedCrossRefGoogle Scholar
  7. American Society for Microbiology. (2003). Sentinel laboratory guidelines for suspected agents of bioterrorism. Burkholderia mallei and B. pseudomallei. Google Scholar
  8. Angus, B.J., Smith, M.D., Suputtamongkol, Y., Mattie, H., Walsh, A.L., Wuthiekanun, V., Chaowagul, W., and White, N.J. (2000). Pharmacokinetic-pharmacodynamic evaluation of ceftazidime continuous infusion vs. intermittent bolus injection in septicaemic melioidosis. Br. J. Clin. Pharmacol. 49:445–452.PubMedCrossRefGoogle Scholar
  9. Anuntagool, A., Intachote, P., Naigowit, P., and Sirisinha, S. (1996). Rapid antigen detection assay for identification of Burkholderia (Pseudomonas) pseudomallei infection. J. Clin. Microbiol. 34:975–976.PubMedGoogle Scholar
  10. Anuntagool, N., Aramsri, P., Panichakul, T., Wuthiekanun, V., Kinoshita, R., White, N.J., and Sirisinha, S. (2000b). Antigenic heterogeneity of lipopolysaccharide among Burkholderia pseudomallei clinical isolates. Southeast Asian J. Trop Med. Public Health 31(Suppl 1):146–152.PubMedGoogle Scholar
  11. Anuntagool, N., Naigowit, P., Petkanchanapong, V., Aramsri, P., Panichakul, T., and Sirisinha, S. (2000a). Monoclonal antibody-based rapid identification of Burkholderia pseudomallei in blood culture fluid from patients with community-acquired septicaemia. J. Med. Microbiol. 49:1075–1078.PubMedGoogle Scholar
  12. Anuntagool, N., Rugdech, P., and Sirisinha, S. (1993). Identification of specific antigens of Pseudomonas pseudomallei and evaluation of their efficacies for diagnosis of melioidosis. J. Clin. Microbiol. 31:1232–1236.PubMedGoogle Scholar
  13. Anuntagool, N., and Sirisinha, S. (2002). Antigenic relatedness between Burkholderia pseudomallei and Burkholderia mallei. Microbiol. Immunol. 46:143–150.PubMedGoogle Scholar
  14. Arun, S., Neubauer, H., Gürel, A., Ayyildiz, G., Kusçu, B., Yesildere, T., Meyer, H., and Hermanns, W. (1999). Equine glanders in Turkey. Vet. Rec. 144:255–258.PubMedGoogle Scholar
  15. Ashdown, L.R. (1979a). An improved screening technique for isolation of Pseudomonas pseudomallei from clinical specimens. Pathology 11:293–297.PubMedGoogle Scholar
  16. Ashdown, L.R. (1979b). Identification of Pseudomonas pseudomallei in the clinical laboratory. J. Clin. Pathol. 32:500–504.PubMedGoogle Scholar
  17. Ashdown, L.R. (1979c). Nosocomial infection due to Pseudomonas pseudomallei: two cases and an epidemiologic study. Rev. Infect. Dis. 1:891–894.PubMedGoogle Scholar
  18. Ashdown, L.R. (1981). Relationship and significance of specific immunoglobulin M antibody response in clinical and subclinical melioidosis. J. Clin Microbiol. 14:361–364.PubMedGoogle Scholar
  19. Ashdown, L.R. (1987). Indirect haemagglutination test for melioidosis. Med. J. Aust. 147:364–365.PubMedGoogle Scholar
  20. Ashdown, L.R. (1992a). Rapid differentiation of Pseudomonas pseudomallei from Pseudomonas cepacia. Lett. Appl. Microbiol. 14:203–205.PubMedGoogle Scholar
  21. Ashdown, L.R. (1992b). Serial C-reactive protein levels as an aid to the management of melioidosis. Am. J. Trop. Med. Hyg. 46:151–157.PubMedGoogle Scholar
  22. Ashdown, L.R., Johnson, R.W., Koehler, J.M., and Cooney, C.A. (1989). Enzyme-linked immunosorbent assay for the diagnosis of clinical and sub-clinical melioidosis. J. Infect. Dis. 160:253–260.PubMedGoogle Scholar
  23. Ashdown, L.R., and Koehler, J.M. (1990). Production of hemolysin and other extracellular enzymes by clinical isolates of Pseudomonas pseudomallei. J. Clin. Microbiol. 28:2331–2334.PubMedGoogle Scholar
  24. Atkins, T., Prior, R., Mack, K., Russell, P., Nelson, M., Oyston, P.C.F., Dougan, G., and Titball, R.W. (2002b). A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acid biosynthetic pathway, is attenuated and protective in a murine model of melioidosis. Infect. Immun. 70:5290–5294.PubMedCrossRefGoogle Scholar
  25. Atkins, T., Prior, R., Mack, K., Russell, P., Nelson, M., Prior, J., Ellis, J., Oyston, P.C.F., Dougan, G., and Titball, R.W. (2002a). Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J. Med. Microbiol. 51:539–547.PubMedGoogle Scholar
  26. Barnes, J.L., Ulett, G.C., Ketheesan, N., Clair, T., Summers, P.M., and Hirst, R.G. (2001). Induction of multiple chemokine and colony-stimulating factor genes in experimental Burkholderia pseudomallei infection. Immunol. Cell. Biol. 79:490–501.PubMedCrossRefGoogle Scholar
  27. Bauernfiend, A., Roller, C., Meyer, D., Jungwirth, R., and Schneider, I. (1998). Molecular procedure for rapid detection of Burkholderia mallei and Burkholderia pseudomallei. J. Clin. Microbiol. 36:2737–2741.Google Scholar
  28. Bernstein, J.M., and Carling, E.R. (1909). Observations on human glanders with a study of six cases and a discussion of the methods of diagnosis. Br. Med. J. i:319–325.CrossRefGoogle Scholar
  29. Blanc, G., and Baltazard, M. (1941). Transmission du bacilli de Whitmore par la puce du rat Xenopsylla cheopis. Compt. Rend. Acad. Sci. 213:541–543.Google Scholar
  30. Blancou, J. (1994). Early methods for the surveillance and control of glanders in Europe. Rev. Sci. Tech. Off. Int. Epiz. 13:545–557.Google Scholar
  31. Boerner, P. (1882). A preliminary report on work by the Imperial Health Care Office leading to discovery of the glanders bacillus. Deutsche Med. Wochenschr. 52:707–708.Google Scholar
  32. Bojtzov, V., and Geissler, E. (1999). Military biology in the USSR, 1920–45. In: Geissler, E., Moon, J.E. van C. (eds.), SIPRI Chemical and Biological Warfare Studies. 18. Biological and Toxin Weapons: Research, Development and Use from the Middle Ages to 1945. Oxford University Press, Oxford, pp. 153–167.Google Scholar
  33. Breitbach, K., Rottner, K., Klocke, S., Rohde, M., Jenzora, A., Wehland, J., and Steinmetz, I. (2003). Actin-based motility of Burkholderia pseudomallei involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins. Cell. Microbiol. 5:385–393.PubMedCrossRefGoogle Scholar
  34. Brett, P.J., Burtnick, M.N., and Woods, D.E. (2003). The wbiA locus is required for the 2-O-acetylation of lipopolysaccharides expressed by Burkholderia pseudomallei and Burkholderia thailandensis. FEMS Microbiol. Lett. 218:323–328.PubMedCrossRefGoogle Scholar
  35. Brett, P.J., Mah, D.C.W., and Woods, D.E. (1994). Isolation and characterization of Pseudomonas pseudomallei flagellin proteins. Infect. Immun. 62:1914–1919.PubMedGoogle Scholar
  36. Brett, P.J., DeShazer, D., and Woods, D.E. (1998). Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48: 317–320.PubMedGoogle Scholar
  37. Brett, P.J., and Woods, D.E. (1996). Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates. Infect. Immun. 64:2824–2828.PubMedGoogle Scholar
  38. Brook, M.D., Currie, B., and Desmarchelier, P.M. (1997). Isolation and identification of Burkholderia pseudomallei from soil using selective culture techniques and the polymerase chain reaction. J. Appl. Microbiol. 82:589–596.PubMedGoogle Scholar
  39. Brown, N.F., and Beacham, I.R. (2000). Cloning and analysis of genomic differences unique to Burkholderia pseudomallei by comparison with B. thailandensis. J. Med. Microbiol. 49:993–1001.PubMedGoogle Scholar
  40. Brown, N.F., Boddey, J.A., Flegg, C.A., and Beacham, I.F. (2002). Adherence of Burkholderia pseudomallei cells to cultured human epithelial cell lines is regulated by growth temperature. Infect. Immun. 70:974–980.PubMedCrossRefGoogle Scholar
  41. Brown, N.F., Lew, A.E., and Beacham, I.R. (2000). Identification of new transposable genetic elements in Burkholderia pseudomallei using subtractive hybridisation. FEMS Microbiol. Lett. 183:73–79.PubMedGoogle Scholar
  42. Bryan, L.E., Wong, S., Woods, D.E., Dance, D.A.B., and Chaowagul, W. (1994). Passive protection of diabetic rats with antisera specific for the polysaccharide portion of the lipopolysaccharide isolated from Pseudomonas pseudomallei. Can. J. Infect. Dis. 5:170–178.Google Scholar
  43. Burtnick, M.N., Brett, P.J., and Woods, D.E. (2002). Molecular and physical characterization of Burkholderia mallei O antigens. J. Bacteriol. 184:849–852.PubMedGoogle Scholar
  44. Burtnick, M.N., and Woods, D.E. (1999). Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob. Agents Chemother. 43:2648–2656.PubMedGoogle Scholar
  45. Charuchaimontri, C., Suputtamongkol, Y., Nilakul, C., Chaowagul, W., Chetchotisakd P., Lertpatanasuwun, N., Intaranongpai, S., Brett, P.J., and Woods, D.E. (1999). Antilipopolysaccharide II: an antibody protective against fatal melioidosis. Clin. Infect. Dis. 29:813–818.PubMedGoogle Scholar
  46. Chaowagul, W., Simpson, A.J.H., Suputtamongkol, Y., Smith, M.D., Angus, B.J., and White, N.J. (1999a). A comparison of chloramphenicol, trimethoprim-sulfamethoxazole, and doxycycline with doxycycline alone as maintenance therapy for melioidosis. Clin. Infect. Dis. 29:375–380.PubMedGoogle Scholar
  47. Chaowagul, W., Simpson, A.J.H., Suputtamongkol, Y., and White, N.J. (1999b). Empirical cephalosporin treatment of melioidosis. Clin. Infect. Dis. 28:1328.PubMedCrossRefGoogle Scholar
  48. Chaowagul, W., Suputtamongkol, Y., Dance, D.A.B., Rajchanuvong, A., Pattara-arechachai, J., and White, N.J. (1993). Relapse in melioidosis: incidence and risk factors. J. Infect. Dis. 168:1181–1185.PubMedGoogle Scholar
  49. Chaowagul, W., Suputtamongkol, Y., Smith, M.D., and White, N.J. (1997). Oral fluoroquinolones for maintenance treatment of melioidosis. Trans. R. Soc. Trop. Med. Hyg. 91:599–601.PubMedCrossRefGoogle Scholar
  50. Chaowagul, W., White, N.J., Dance, D.A.B., Wattanagoon, Y., Naigowit, P., Davis, T.M.E., Looareesuwan, S., and Pitakwatchara, P. (1989). Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J. Infect. Dis. 159:890–899.PubMedGoogle Scholar
  51. Chen, Y.S., Chen, S.C., Kao, C.M., and Chen, Y.L. (2003). Effects of soil pH, temperature and water content on the growth of Burkholderia pseudomallei. Folia Microbiol. 48:253–256.Google Scholar
  52. Cheng, A.C., Stephens, D.P., Anstey, N.M., and Currie B.J. (2004). Adjunctive granulocyte colony-stimulating factor for treatment of septic shock due to melioidosis. Clin. Infect. Dis. 38:32–37.PubMedCrossRefGoogle Scholar
  53. Chenthamarakshan, V., Vadivelu, J., and Putucheary, S.D. (2001). Detection of immunoglobulins M and G using culture filtrate antigen of Burkholderia pseudomallei. Diagn. Microbiol. Infect. Dis. 39:1–7.PubMedCrossRefGoogle Scholar
  54. Chetchotisakd, P., Chaowagul, W., Mootsikapun, P., Budhsarawong, D., and Thinkamrop, B. (2001a). Maintenance therapy of melioidosis with ciprofloxacin plus azithromycin compared with cotrimoxazole plus doxycycline. Am. J. Trop. Med. Hyg. 64:24–27.PubMedGoogle Scholar
  55. Chetchotisakd, P., Porramitikul, S., Mootsikapun, P., Anunnatsiri, S., and Thinkamrop, B. (2001b). Randomized, double-blind, controlled study of cefoperazone-sulbactam plus cotrimoxazole versus ceftazidime plus cotrimoxazole for the treatment of severe melioidosis. Clin. Infect. Dis. 33:29–34.PubMedCrossRefGoogle Scholar
  56. Chierakul, W., Rajanuwong, A., Wuthiekanun, V., Teerawattanasook, N., Gasiprong, M., Simpson, A., Chaowagul, W., White, N.J. (2004). The changing pattern of bloodstream infections associated with the rise in HIV prevalence in northeastern Thailand. Trans. R. Soc. Trop. Med. Hyg. 98:678–686.PubMedGoogle Scholar
  57. Chua, K.L., Chan, Y.Y., and Gan, Y.H. (2003). Flagella are virulence determinants of Burkholderia pseudomallei. Infect. Immun. 71:1622–1629.PubMedCrossRefGoogle Scholar
  58. Cottew, G.S. (1950). Melioidosis in sheep in Queensland. Aust. J. Exp. Biol. Med. Sci. 28:677–683.PubMedGoogle Scholar
  59. Currie, B. (1995). Pseudomonas pseudomallei-insulin interaction. Infect. Immun. 63:3745.PubMedGoogle Scholar
  60. Currie, B.J., Fisher, D.A., Anstey, N.M., and Jacups, S.P. (2000a). Melioidosis: acute and chronic disease, relapse and re-activation. Trans. R. Soc. Trop. Med. Hyg. 94:301–304.PubMedCrossRefGoogle Scholar
  61. Currie, B.J., Fisher, D.A., Howard, D.M., Burrow, J.N.C., Lo, D., Selva-nayagam, S., Anstey, N.M., Huffam, S.E., Snelling, P.L., Marks, P.J., Stephens, D.P., Lum, G.D., Jacups, S.P., and Krause, V.L. (2000b). Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature. Clin. Infect. Dis. 31:981–986.PubMedCrossRefGoogle Scholar
  62. Currie, B.J., Fisher, D.A., Howard, D.M., Burrow, J.N.C., Selvanayagam, S., Snelling, P.L., Anstey, N.M., and Mayo, M.J. (2000c). The epidemiology of melioidosis in Australia and Papua New Guinea. Acta Trop. 74:121–127.PubMedCrossRefGoogle Scholar
  63. Currie, B.J., and Jacups, S.P. (2003). Intensity of rainfall and severity of melioidosis, Australia. Emerg. Infect. Dis. 9:1538–1542.PubMedGoogle Scholar
  64. Currie, B.J., Mayo, M., Anstey, N.M., Donohoe, P., Haase, A., and Kemp, D.J. (2001). A cluster of melioidosis cases from an endemic region is clonal and linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am. J. Trop. Med. Hyg. 65:177–179.PubMedGoogle Scholar
  65. Currie, B., Smith-Vaughan, H., Golledge, C., Buller, N., Sriprakash, K.S., and Kemp, D.J. (1994). Pseudomonas pseudomallei isolates collected over 25 years from a nontropical endemic focus show clonality on the basis of ribotyping. Epidemiol. Infect. 113:307–312.PubMedGoogle Scholar
  66. Cuzzubbo, A.J., Chenthamarakshan, V., Vadivelu, J., Putucheary, S.D., Rowland, D., and Devine, P.L. (2000). Evaluation of a new commercially available immunoglobulin M and immunoglobulin G immunochromatographic test for diagnosis of melioidosis infection. J. Clin. Microbiol. 38: 1670–1671.PubMedGoogle Scholar
  67. Dance, D.A.B. (1990). Melioidosis. Rev. Med. Microbiol. 1:143–150.Google Scholar
  68. Dance, D.A.B. (1991). Melioidosis: the tip of the iceberg? Clin. Microbiol. Rev. 4:52–60.PubMedGoogle Scholar
  69. Dance, D.A.B. (2001). Melioidosis as an emerging global problem. Acta Trop. 74:115–119.CrossRefGoogle Scholar
  70. Dance, D.A.B., Davis, T.M.E., Wattanagoon, Y., Chaowagul, W., Saiphan, P., Looareesuwan, S., Wuthiekanun, V., and White, N.J. (1989a). Acute suppurative parotitis caused by Pseudomonas pseudomallei in children. J. Infect. Dis. 159:654–660.PubMedGoogle Scholar
  71. Dance, D.A.B., Wuthiekanun, V., Chaowagul, W., and White N.J. (1989b). The antimicrobial susceptibility of Pseudomonas pseudomallei. Emergence of resistance in vitro and during treatment. J. Antimicrob. Chemother. 24:295–309.PubMedGoogle Scholar
  72. Dance, D.A.B., Wuthiekanun, V., Chaowagul, W., and White, N.J. (1989c). Interactions in vitro between agents used to treat melioidosis. J. Antimicrob. Chemother. 24:311–316.PubMedGoogle Scholar
  73. Dance, D.A.B., Wuthiekanun, V., Naigowit, P., and White, N.J. (1989d). Identification of Pseudomonas pseudomallei in clinical practice: use of simple screening tests and API 2ONE. J. Clin. Pathol. 42:645–648.PubMedGoogle Scholar
  74. Dance, D.A.B., King, C., Aucken, H., Knott, C.D., West, P.G., and Pitt, T.L. (1992). An outbreak of melioidosis in imported primates in Britain. Vet. Rec. 130:525–529.PubMedGoogle Scholar
  75. Dance, D.A.B., Smith, M.D., Aucken, H.M., and Pitt, T.L. (1999). Imported melioidosis in England and Wales. Lancet 353:208.PubMedCrossRefGoogle Scholar
  76. Dannenberg, A.M., and Scott, E.M. (1958). Melioidosis: pathogenesis and immunity in mice and hamsters. I. Studies with virulent strains of Malleomyces pseudomallei. J. Exp. Med. 107:153–166.PubMedCrossRefGoogle Scholar
  77. Dejsirilert, S., Butraporn, R., Chiewsilp, D., Kondo, E., and Kanai, K. (1989). High activity of acid phosphatase of Pseudomonas pseudomallei as a possible attribute relating to its pathogenicity. Jap. J. Med. Sci. Biol. 42:39–49.PubMedGoogle Scholar
  78. Dejsirilert, S., Kondo, E., Chiewsilp, D., and Kanai, K. (1991). Growth and survival of Pseudomonas pseudomallei in acidic environments. Jap. J. Med. Sci. Biol. 44:63–74.PubMedGoogle Scholar
  79. Derbyshire, J.B. (2002). The eradication of glanders in Canada. Can. Vet. J. 43:722–726.PubMedGoogle Scholar
  80. Desakorn, V., Smith, M.D., Wuthiekanun, V., Dance, D.A.B., Aucken, H., Suntharasamai, P., Rajchanuvong, A., and White, N.J. (1994). Detection of Pseudomonas pseudomallei antigen in urine for the diagnosis of melioidosis. Am. J. Trop. Med. Hyg. 51:627–633.PubMedGoogle Scholar
  81. DeShazer, D., Brett, P.J., Burtnick, M.N., and Woods, D.E. (1999). Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J. Bacteriol. 181:4661–4664.PubMedGoogle Scholar
  82. DeShazer, D., Brett, P.J., Carlyon, R., and Woods, D.E. (1997). Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J. Bacteriol. 179:2116–2125.PubMedGoogle Scholar
  83. DeShazer, D., Brett, P.J., and Woods, D.E. (1998). The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol. Microbiol. 30:1081–1100.PubMedCrossRefGoogle Scholar
  84. DeShazer, D., Waag, D.M., Fritz, D.L., and Woods, D.E. (2001). Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridisation and demonstration that the encoded capsule is an essential virulence determinant. Microb. Pathogenesis 30:253–269.CrossRefGoogle Scholar
  85. DeShazer, D., and Woods, D.E. (1999). Animal models of melioidosis. In: Zek, O., Sande, M. (eds.), Handbook of Animal Models of Infection. Academic Press, pp. 199–203.Google Scholar
  86. Desmarchelier, P.M., Dance, D.A.B., Chaowagul, W., Suputtamongkol, Y., White, N.J., and Pitt, T.L. (1993). Relationships among Pseudomonas pseudomallei isolates from patients with recurrent melioidosis. J. Clin. Microbiol. 31:1592–1596.PubMedGoogle Scholar
  87. Dharakul, T., and Songsivilai, S. (1996). Recent developments in the laboratory diagnosis of melioidosis. J. Infect. Dis. Antimicrob. Agents 13:77–80.Google Scholar
  88. Dharakul, T., Songsivilai, S, Anuntagool, N., Chaowagul, W., Wongbunnate, S., Intachote, P., and Sirisinha, S. (1997). Diagnostic value of an antibody enzyme-linked immunosorbent assay using affinity-purified antigen in an area endemic for melioidosis. Am. J. Trop. Med. Hyg. 56:418–423.PubMedGoogle Scholar
  89. Dharakul, T., Songsivilai, S., Smithikarn, S., Thepthai, C., and Leelaporn, A. (1999). Rapid identification of Burkholderia pseudomallei in blood cultures using lipopolysaccharide-specific monoclonal antibody. Am. J. Trop. Med. Hyg. 61:658–662.PubMedGoogle Scholar
  90. Dharakul, T., Songsivilai, S., Viriyachitra, S., Luangwedchakarn, V., Tassaneetritap, S., and Chaowagul, W. (1996). Detection of Burkholderia pseudomallei DNA in patients with septicemic melioidosis. J. Clin. Microbiol. 34:609–614.PubMedGoogle Scholar
  91. Dharakul, T., Vejbaesya, S., Chaowagul, W., Luangtrakool, P., Stephens, H.A.F., and Songsivilai, S. (1998). HLA-DR and-DQ associations with melioidosis. Hum. Immunol. 59:580–586.PubMedCrossRefGoogle Scholar
  92. Dhiensiri, T., Puapairoj, S., and Susaengrat, W. (1988). Pulmonary melioidosis: clinical-radiologic correlation in 183 cases from northeastern Thailand. Radiology 166:711–715.PubMedGoogle Scholar
  93. Dodin, A., and Fournier, J. (1970). Antigènes précipitants et agglutinants de Pseudomonas pseudomallei (B. de Whitmore). II. Mise en évidence d’antigènes précipitants communs à Yersinia pestis et Pseudomonas pseudomallei. Ann. Inst. Pasteur (Paris) 119:738–744.Google Scholar
  94. Dorman, S.E., Gill, V.J., Gallin, J.I., and Holland, S.M. (1998). Burkholderia pseudomallei infection in a Puerto Rican patient with chronic granulomatous disease: case report and review of occurrences in the Americas. Clin. Infect. Dis. 26:889–894.PubMedGoogle Scholar
  95. Doyle, A.C. (1913). The adventure of the dying detective. The Strand Magazine xivi:79.Google Scholar
  96. Egan, M., and Gordon, D.L. (1996). Burkholderia pseudomallei inactivates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect. Immun. 64:4952–4959.PubMedGoogle Scholar
  97. Embi, N., Devarajoo, D., Mohamed, R., and Ismail, G. (1993). An ELISA-disc procedure for antibodies to Pseudomonas pseudomallei: application for serological study of melioidosis in an endemic area. World J. Microbiol. Biotechnol. 9:91–96.CrossRefGoogle Scholar
  98. Everett, E.D., and Nelson, R.A. (1975). Pulmonary melioidosis. Observations in thirty-nine cases. Am. Rev. Respir. Dis.112:331–340.PubMedGoogle Scholar
  99. Faa, A.G., and Holt, P.J. (2002). Melioidosis in the Torres Strait islands of Far North Queensland. Commun. Dis. Intell. 26:279–283.PubMedGoogle Scholar
  100. Friedland, J.S., Suputtamongkol, Y., Remick, D.G., Chaowagul, W., Strieter, R.M., Kunkel, S.L., White, N.J., and Griffin, G.E. (1992). Prolonged elevations of interleukin-8 and interleukin-6 concentrations in plasma and of leukocyte interleukin-8 mRNA levels during septicemic and localized Pseudomonas pseudomallei infection. Infect. Immun. 60:2402–2408.PubMedGoogle Scholar
  101. Fritz, D.L., Vogel, P., Brown, D.R., DeShazer, D.E., and Waag, M. (2000). Mouse model of sublethal and lethal intraperitoneal glanders (Burkholderia mallei). Vet. Pathol. 37:626–636.PubMedCrossRefGoogle Scholar
  102. Fukuhara, H., Ishimine, T, Futenma, M., and Saito, A. (1995). Efficacy of antibiotics against extracellular and intracellular Burkholderia pseudomallei, and their therapeutic effects on experimental pneumonia in mice. Jap. J. Trop. Med. Hyg. 23:1–7.Google Scholar
  103. Gaiger, S.H. (1913). Glanders in man. J. Comp. Pathol. Therap. XXVI:223–236.Google Scholar
  104. Gan, Y.-H., Chua, K.L., Chua, H.H., Liu, B., Hii, C.S., Chong, H.L, and Tan, P. (2002). Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol. Microbiol. 44:1185–1197.PubMedCrossRefGoogle Scholar
  105. Gauthier, Y.P., Thibault, F.M., Paucod, J.C., and Vidal, D.R. (2000). Protease production by Burkholderia pseudomallei and virulence in mice. Acta Trop. 74:215–220.PubMedCrossRefGoogle Scholar
  106. Gee, J.E., Sacchi, C.T., Glass, M.B., De, B.K., Weyant, R.S., Levett, P.N., Whitney, A.M., Hoffmaster, A.R., and Popovic, T. (2003). Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei. J. Clin. Microbiol. 41:4647–4654.PubMedCrossRefGoogle Scholar
  107. Godfrey, A.J., Wong, S., Dance, D.A.B., Chaowagul, W., and Bryan, L.E. (1991). Pseudomonas pseudomallei resistance to β-lactamase antibiotics due to alterations in the chromosomally encoded β-lactamase. Antimicrob. Agents Chemother. 35:1635–1640.PubMedGoogle Scholar
  108. Godoy, D., Randle, G., Simpson, A.J., Aanensen. D.M., Pitt, T.L., Kinoshita, R., and Spratt, B.G. (2003). Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol. 41:2068–2079.PubMedCrossRefGoogle Scholar
  109. Goshorn, R.K. (1987). Recrudescent pulmonary melioidosis. A case report involving the so-called ‘Vietnamese Time Bomb.’ Indiana Med. 80:247–249.PubMedGoogle Scholar
  110. Gotoh, N., White, N.J., Chaowagul, W., and Woods, D.E. (1994). Isolation and characterization of the outer membrane proteins of Burkholderia (Pseudomonas) pseudomallei. Microbiology 140:797–805.PubMedGoogle Scholar
  111. Green, R.N., and Tuffnell, P.G. (1968). Laboratory acquired melioidosis. Am. J. Med. 44:599–605.PubMedCrossRefGoogle Scholar
  112. Guard, R.W., Khafagi, F.A., Brigden, M.C., and Ashdown, L.R. (1984). Melioidosis in far North Queensland. A clinical and epidemiological review of twenty cases. Am. J. Trop. Med. Hyg. 33:467–473.PubMedGoogle Scholar
  113. Haase, A., Brennan, M., Barrett, S., Wood, Y., Huffam, S., O’Brien, D., and Currie, B. (1998). Evaluation of PCR for diagnosis of melioidosis. J. Clin. Microbiol. 36:1039–1041.PubMedGoogle Scholar
  114. Haase, A., Janzen, J., Barrett, S., and Currie, B. (1997). Toxin production by Burkholderia pseudomallei strains and correlation with severity of melioidosis. J. Med. Microbiol. 46:557–563.PubMedGoogle Scholar
  115. Haase, A., Smith-Vaughan, H., Melder, A., Wood, Y., Janmaat, A., Gilfedder, J., Kemp, D., and Currie, B. (1995). Subdivision of Burkholderia pseudomallei ribotypes into multiple types by random amplified polymorphic DNA analysis provides new insights into epidemiology. J. Clin. Microbiol. 33:1687–1690.PubMedGoogle Scholar
  116. Hagen, R.M., Gauthier, Y.P., Sprague, L.D., Vidal, D.R., Zysk, G., Finke, E.-J., and Neubauer, H. (2002). Strategies for PCR based detection of Burkholderia pseudomallei DNA in paraffin wax embedded tissues. Mol. Pathol. 55:398–400.PubMedCrossRefGoogle Scholar
  117. Harley, V.S., Dance, D.A.B., Drasar, B.S., and Tovey, G. (1998b). Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios 96:71–93PubMedGoogle Scholar
  118. Harley, V.S., Dance, D.A.B., Tovey, G., McCrossan, M.V., and Drasar, B.S. (1998a). An ultrastructural study of the phagocytosis of Burkholderia pseudomallei. Microbios 94:35–45.PubMedGoogle Scholar
  119. Harris, S. (1999). The Japanese biological warfare programme: an overview. In: Geissler, E., and Moon, J.E. van C. (eds.), SIPRI Chemical and Biological Warfare Studies. 18. Biological and Toxin Weapons: Research, Development and Use from the Middle Ages to 1945. Oxford University Press, Oxford, pp. 127–152.Google Scholar
  120. Häußler, S., Nimtz, M., Domke, T., Wray, V., and Steinmetz, I. (1998). Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect. Immun. 66:1588–1593.PubMedGoogle Scholar
  121. Häußler, S., Rohde, M., and Steinmetz, I. (1999). Highly resistant Burkholderia pseudomallei small colony variants isolated in vitro and in experimental melioidosis. Med. Microbiol. Immunol. (Berlin) 188:91–97.PubMedCrossRefGoogle Scholar
  122. Häußler, S., Rohde, M., von Neuhoff, N. Nimtz, M., and Steinmetz, I. (2003). Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect. Immun. 71:2970–2975.PubMedCrossRefGoogle Scholar
  123. Heckly, R.J., and Nigg, C. (1958). Toxins of Pseudomonas pseudomallei. II. Characterization. J. Bacteriol. 76:427–436.PubMedGoogle Scholar
  124. Heine, H.S., England, M.J., Waag, D.M., and Byrne, W.R. (2001). In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and e-test. Antimicrob. Agents Chemother. 45: 2119–2121.PubMedCrossRefGoogle Scholar
  125. Heng, B.H., Goh, K.T., Yap, E.H., Loh, H., and Yeo, M. (1998). Epidemiological surveillance of melioidosis in Singapore. Ann. Acad. Med. Singapore 27:478–484.PubMedCrossRefGoogle Scholar
  126. Hicks, C.L., Kinoshita, R., and Ladds, P.W. (2000). Pathology of melioidosis in captive marine animals. Aust. Vet. J. 78:193–195.PubMedGoogle Scholar
  127. Ho, M., Schollaardt, T., Smith, M.D., Perry, M.B., Brett, P.J., Chaowagul, W., and Bryan, L.E. (1997). Specificity and functional activity of anti-Burkholderia pseudomallei polysaccharide antibodies. Infect. Immun. 65:3648–3653.PubMedGoogle Scholar
  128. Ho, P.L., Cheung, T.K.M., Kinoshita, R., Tse, C.W.S., Yuen, K.Y., and Chau, P.Y. (2002a). Activity of five fluoroquinolones against 71 isolates of Burkholderia pseudomallei. J. Antimicrob. Chemother. 49:1042–1044.PubMedCrossRefGoogle Scholar
  129. Ho, P.L., Cheung, T.K.M., Yam, W.C., and Yuen, K.Y. (2002b). Characterization of a laboratory-generated variant of BPS β-lactamase from Burkholderia pseudomallei that hydrolyses ceftazidime. J. Antimicrob. Chemother. 50:723–726.PubMedCrossRefGoogle Scholar
  130. Holden, M.S., Titball, R.W., Peacock, S.J., et al. (2004). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Nat. Acad. Sci. 101:14240–14245.PubMedCrossRefGoogle Scholar
  131. Holmes, B., Pinning, C.A., and Dawson, C.A. (1986). A probability matrix for the identification of gram-negative, aerobic, non-fermentative bacteria that grow on nutrient agar. J. Gen. Microbiol. 132:1827–1842.PubMedGoogle Scholar
  132. Hoppe, I., Brenneke, B., Rohde, M., Kreft, A., Haußler, S., Regnzerowski, A., and Steinmetz, I. (1999). Characterisation of a murine model of melioidosis: characterisation of different strains of mice. Infect. Immun. 67:2891–2900.PubMedGoogle Scholar
  133. Howard, K., and Inglis, T.J.J. (2003). Novel selective medium for isolation of Burkholderia pseudomallei. J. Clin. Microbiol. 41:3312–3316.PubMedCrossRefGoogle Scholar
  134. Howe, C. (1950). Glanders. In: Christian, H.A. Oxford Medicine, Vol. 5, pp. 185–202. Oxford University Press, Oxford.Google Scholar
  135. Howe, C., and Miller, W.R. (1947). Human glanders: report of six cases. Ann. Intern. Med. 26: 93–115.PubMedGoogle Scholar
  136. Howe, C., Sampath, A., and Spotnitz, M. (1971). The pseudomallei group: a review. J. Infect. Dis. 124:598–606.PubMedGoogle Scholar
  137. Hunting, W. (1908). Glanders. A clinical treatise. H&W Brown, London.Google Scholar
  138. Inglis, T.J.J., Chiang, D., Lee, G.S.H., and Lim, C.K. (1998). Potential misidentification of Burkholderia pseudomallei by API 20NE. Pathology 30:62–64.PubMedCrossRefGoogle Scholar
  139. Inglis, T.J.J., Garrow, S.C., Henderson, M., Clair, A., Sampson, J., O’Reilly, L., and Cameron, B. (2000a). Burkholderia pseudomallei traced to water treatment plant in Australia. Emerg. Infect. Dis. 6:56–59.PubMedGoogle Scholar
  140. Inglis T.J.J., Rigby, P., Robertson, T.A., Dutton, N.S., Henderson, M., and Chang, B.J. (2000b). Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infect. Immun. 68:1681–1686.PubMedCrossRefGoogle Scholar
  141. Inglis, T.J.J., Mee, B.J., and Chang, B.J. (2001). The environmental microbiology of melioidosis. Rev. Med. Microbiol. 12:13–20.Google Scholar
  142. Inglis, T.J.J., O’Reilly, L.O., Foster, N., Clair, A., and Sampson, J. (2002). Comparison of rapid, automated ribotyping and DNA macrorestriction analysis of Burkholderia pseudomallei. J. Clin. Microbiol. 40:3198–3203.PubMedCrossRefGoogle Scholar
  143. Inglis, T.J.J., Robertson, T., Woods, D.E. Dutton, N., and Chang, B.J. (2003). Flagellum-mediated adhesion by Burkholderia pseudomallei precedes invasion of Acanthamoeba astronyxis. Infect. Immun. 71:2280–2282.PubMedCrossRefGoogle Scholar
  144. Ismail, G Embi, M.N., Omar, O., Razak, N., Allen, J.C., and Smith, J.C. (1987). A competitive immunosorbent assay for detection of Pseudomonas pseudomallei exotoxin. J. Med. Microbiol. 23:353–357.PubMedGoogle Scholar
  145. Isshiki, Y., Matsuura, M., Dejsirilert, S., Ezaki, T., and Kawahara, K. (2001). Separation of 6-deoxyheptane from a smooth-type lipopolysaccharide preparation of Burkholderia pseudomallei. FEMS Microbiol. Lett. 199:21–25.PubMedGoogle Scholar
  146. Jeddeloh, J.A., Fritz, D.L., Waag, D.M., Hartings, J.M., and Andrews, G.P. (2003). Biodefense-driven murine model of pneumonic melioidosis. Infect. Immun. 71:584–587.PubMedCrossRefGoogle Scholar
  147. Jenney, A.W.J., Lum, G., Fisher, D.A., and Currie, B.J. (2001). Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int. J. Antimicrob. Agents 17:109–113.PubMedCrossRefGoogle Scholar
  148. Jones, A.L., Beveridge, T.J., and Woods, D.E. (1996). Intracellular survival of Burkholderia pseudomallei. Infect. Immun. 64:782–790.PubMedGoogle Scholar
  149. Jones, A.L., DeShazer, D., and Woods, D.E. (1997). Identification and characterization of a two-component regulatory system involved in invasion of eukaryotic cells and heavy-metal resistance in Burkholderia pseudomallei. Infect. Immun. 65:4972–4977.PubMedGoogle Scholar
  150. Jones, S.M., Ellis, J.F., Russell, P., Griffin, K.F., and Oyston, P.C.F. (2002). Passive protection against Burkholderia pseudomallei infection in mice by monoclonal antibodies against capsular polysaccharide, lipopolysaccharide or proteins. J. Med. Microbiol. 51:1055–1062.PubMedGoogle Scholar
  151. Kanai, K., Suzuki, Y., Kondo, E., Maejima, Y., Miyamoto, D., Suzuki, T., and Kurata, T. (1997). Specific binding of Burkholderia pseudomallei cells and their cell-surface acid phosphatase to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Southeast Asian J. Trop. Med. Hyg. 28:781–790.Google Scholar
  152. Kanaphun, P., Thirawattanasuk, N., Suputtamongkol, Y., Naigowit, P., Dance, D.A.B., Smith, M.D., and White, N.J. (1993). Serology and carriage of Pseudomonas pseudomallei: a prospective study in 1000 hospitalized children in Northeast Thailand. J. Infect. Dis. 167:230–233.PubMedGoogle Scholar
  153. Kawahara, K., Dejsirilert, S., and Ezaki, T. (1998). Characterization of three capsular polysaccharides produced by Burkholderia pseudomallei. FEMS Microbiol. Lett. 169:283–287.PubMedGoogle Scholar
  154. Kenny, D.J., Russell, P., Rogers, D., Eley, S.M., and Titball, R.W. (1999). In vitro susceptibilities of Burkholderia mallei in comparison to those of other pathogenic Burkholderia spp. Antimicrob. Agents Chemother. 43:2773–2775.PubMedGoogle Scholar
  155. Kespichayawattana, W., Rattanachetkul, S., Wanun, T., Utaisincharoen, P., and Sirisinha, S. (2000). Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect. Immun. 68:5377–5384.PubMedCrossRefGoogle Scholar
  156. Ketheesan, N., Barnes, J.L, Ulett, G.C., VanGessel, H.J., Norton, R.E., Hirst, R.G., and LaBrooy, J.T. (2002). Demonstration of a cell-mediated immune response in melioidosis. J. Infect. Dis. 186:286–289.PubMedCrossRefGoogle Scholar
  157. Khupulsup, K., and Petchclai, B. (1986). Application of indirect haemagglutination test and indirect fluorescent antibody test for IgM antibody for diagnosis of melioidosis in Thailand. Am. J. Trop. Med. Hyg. 35:366–369.PubMedGoogle Scholar
  158. Klein, G.C. (1980). Cross-reaction to Legionella pneumophila antigen in sera with elevated titers to Pseudomonas pseudomallei. J. Clin. Microbiol. 11:27–29.PubMedGoogle Scholar
  159. Knirel, Y.A., Paramonov, N.A., Shashkov, A.S., Kochetkov, N.K., Yarullin, R.G., Farber, S.M., and Efremenko, V.I. (1992). Structure of the polysaccharide chains of Pseudomonas pseudomallei lipopolysaccharides. Carbohydr. Res. 233:185–193.PubMedCrossRefGoogle Scholar
  160. Koh, C.L., Fong, M.Y., Pang, T., Parasakthi, N., and Putucheary, S.D. (1989). Detection, purification and partial characterization of plasmid DNA in Pseudomonas pseudomallei from Malaysia. Trop. Biomed. 6:141–143.Google Scholar
  161. Koh, H.T., Ng, L.S.Y., Sng, L.-H., Wang, G.C.Y., and Lin, R.V.T.P. (2003). Automated identification systems and Burkholderia pseudomallei. J. Clin. Microbiol. 41:1809.PubMedCrossRefGoogle Scholar
  162. Kondo, E., Kurata, T., Naigowit, P., and Kanai, K. (1996). Evolution of cell surface acid phosphatase of Burkholderia pseudomallei. Southeast Asian J. Trop. Med. Public Health 27:592–599.PubMedGoogle Scholar
  163. Korbrisate, S., Suwanasai, N., Leelaporn, A., Ezaki, T., Kawamura, Y., and Sarasombath, S. (1999). Cloning and characterization of a nonhemolytic phospholipase C gene from Burkholderia pseudomallei. J. Clin. Microbiol. 37:3742–3745.Google Scholar
  164. Kosuwon, W., Saengnipanthkul, S., Mahaisavariya, B., and Laupattarakasem, W. (1993). Musculoskeletal melioidosis. J. Bone Joint Surg. 75-A:1811–1815.Google Scholar
  165. Kunakorn, M., Boonma, P., Khupulsup, K., and Petchclai, B. (1990). Enzyme-linked immunosorbent assay for immunoglobulin M specific antibody for the diagnosis of melioidosis. J. Clin. Microbiol. 28:1249–1253.PubMedGoogle Scholar
  166. Kunakorn, M., Jayanetra, P., and Tanphaichitra, D. (1991a). Man-to-man transmission of melioidosis. Lancet 337:1290–1291.PubMedCrossRefGoogle Scholar
  167. Kunakorn, M., Petchclai, B., Khupulsup, K., and Naigowit, P. (1991b). Gold blot for detection of immunoglobulin M (IgM)-and IgG-specific antibodies for rapid serodiagnosis of melioidosis. J. Clin. Microbiol. 29:2065–2067.PubMedGoogle Scholar
  168. Kunakorn, M., and Markham, R.B. (1995). Clinically practical seminested PCR for Burkholderia pseudomallei quantitated by enzyme immunoassay with and without solution hybridization. J. Clin. Microbiol. 33:2131–2135.PubMedGoogle Scholar
  169. Kunakorn, M., Raksakait, K., Sethaudom, C., Sermswan, R., and Dharakul, T. (2000). Comparison of three PCR primer sets for diagnosis of septicemic melioidosis. Acta Trop. 74:247–251.PubMedCrossRefGoogle Scholar
  170. Lauw, F.N., Simpson, A.J.H., Hack, C.E., Prins, J.M., Wolbink, A.M., van Deventer, S.J.H., Chaowagul, W., White, N.J., and van der Poll, T. (2000a). Soluble granzymes are released during human endotoxaemia and in patients with severe infection due to Gram-negative bacteria. J. Infect. Dis. 182:206–213.PubMedCrossRefGoogle Scholar
  171. Lauw, F.N., Simpson, A.J.H., Prins, J.M., Smith, M.D., Kurimoto, M., van Deventer, S.J.H., Speelman, P., Chaowagul, W., White, N.J., and van der Poll, T. (1999). Elevated plasma concentrations of interferon (IFN)-γ and the IFN-γ-inducing cytokines interleukin (IL)-18, IL-12, and IL-15 in severe melioidosis. J. Infect. Dis. 180:1878–1885.PubMedCrossRefGoogle Scholar
  172. Lauw, F.N., Simpson, A.J.H., Prins, J.M., van Deventer, S.J.H., Chaowagul, W., White, N.J., and van der Poll, T. (2000b). The CXC chemokines gamma interferon (IFN-γ)-inducible protein 10 and monokine induced by IFN-γ are released during severe melioidosis. Infect. Immun. 68:3888–3893.PubMedCrossRefGoogle Scholar
  173. Leakey, A.K., Ulett, G.C., and Hirst, R.G. (1998). BALB/c and C57BL/6 mice infected with virulent Burkholderia pseudomallei provide contrasting animal models for the acute and chronic forms of melioidosis. Microb. Pathogenesis 24:269–275.CrossRefGoogle Scholar
  174. Lee, M.-A., and Liu, Y. (2000). Sequencing and characterization of a novel serine metalloprotease from Burkholderia pseudomallei. FEMS Microbiol. Lett. 192:67–72.PubMedGoogle Scholar
  175. Leelarasamee, A. (1997). Diagnostic value of indirect haemagglutination test in melioidosis. J. Infect. Dis. Antimicrob. Agents 14:57–59.Google Scholar
  176. Leelarasamee, A., and Bovornkitti, S. (1989). Melioidosis: review and update. Rev. Infect. Dis. 11:413–425.PubMedGoogle Scholar
  177. Leelarasamee, A., Trakulsomboon, S., Kusum, M., and Dejsirilert, S. (1997). Isolation rates of Burkholderia pseudomallei among the four regions of Thailand. Southeast Asian J. Trop. Med. Public Health 28:107–112.PubMedGoogle Scholar
  178. Lertmemongkolchai, G., Manmontri, W., Leelayuwat, C., Romphruk, A., and Waropastrakul, S. (1991). Immunoblot analysis to demonstrate antigenic variability of clinical isolated Pseudomonas pseudomallei. Asian Pacific J. Allerg. Immunol. 9:5–8.Google Scholar
  179. Lertpatanasuwan, N., Sermsri, K., Petkasaem, A., Trakulsomboon, S., Thamlikitkul, V., and Suputtamongkol, Y. (1999). Arabinose-positive Burkholderia pseudomallei infection in humans: case report. Clin. Infect. Dis. 28:927–928.PubMedCrossRefGoogle Scholar
  180. Lever, M.S., Nelson, M., Ireland, P.I., Stagg, A.J., Beedham, R.J., Hall, G.A., Knight, G., and Titball, R.W. (2003). Experimental aerogenic Burkholderia mallei (glanders) infection in the BALB/c mouse. J. Med. Microbiol. 52:1109–1115.PubMedCrossRefGoogle Scholar
  181. Lew, A., and Desmarchelier, P.M. (1993). Molecular typing of Pseudomonas pseudomallei: restriction fragment length polymorphism of rRNA genes. J. Clin. Microbiol. 31:533–539.PubMedGoogle Scholar
  182. Lew, A., and Desmarchelier, P.M. (1994). Detection of Pseudomonas pseudomallei by PCR and hybridization. J. Clin. Microbiol. 32:1326–1332.PubMedGoogle Scholar
  183. Levi, M.I. (1960). Current studies of melioidosis and certain tasks for scientific investigation. Zh. Mikrobiol. Epidemiol. Immunobiol. 31:133–139.PubMedGoogle Scholar
  184. Liu, P.V. (1957). Survey of haemolysin production among species of pseudomonads. J. Bacteriol. 74:718–727.PubMedGoogle Scholar
  185. Liu, B., Koo, G.C., Yap, E.H., Chua, K.L., and Gan, Y.-H. (2002). Model of differential susceptibility to mucosal Burkholderia pseudomallei infection. Infect. Immun. 70:504–511.PubMedCrossRefGoogle Scholar
  186. Livermore, D.M., Chau, P.Y., Wong, A.I., and Leung, Y.K. (1987). β-Lactamase of Pseudomonas pseudomallei and its contribution to antibiotic resistance. J. Antimicrob. Chemother. 20: 313–321.PubMedGoogle Scholar
  187. Lopez, J., Copps, J., Wilhemsen, C., Moore, R., Kubay, J., St-Jacques, M., Halayko, S., Kranendonk, C., Toback, S., DeShazer, D., Fritz, D.L., Tom, M., and Woods, D.E. (2003). Characterization of experimental equine glanders. Microb. Infect. 5:1125–1131.CrossRefGoogle Scholar
  188. Loprasert, S., Sallabhan, R., Whangsuk, W., and Mongkolsuk, M. (2000). Characterization and mutagenesis of fur gene from Burkholderia pseudomallei. Gene 254:129–137.PubMedCrossRefGoogle Scholar
  189. Low Choy, J., Mayo, M., Janmaat, A., and Currie, B.J. (2000). Animal melioidosis in Australia. Acta Trop. 74:153–158.CrossRefGoogle Scholar
  190. Lowe, P., Engler, C., and Norton, R. (2002). Comparison of automated and nonautomated systems for identification of Burkholderia pseudomallei. J. Clin. Microbiol. 40:4625–4627.PubMedCrossRefGoogle Scholar
  191. Lumbiganon, P., Pengsaa, K., Puapermpoonsiri, S., and Puapairoj, A. (1988). Neonatal melioidosis: a report of 5 cases. Pediatr. Infect. Dis. J. 7:634–636.PubMedCrossRefGoogle Scholar
  192. Lumbiganon, P., and Viengnondha. (1994). Clinical manifestations of melioidosis in children. Pediatr. Infect. Dis. 14:136–140.Google Scholar
  193. Mack, K., and Titball, R.W. (1996). Transformation of Burkholderia pseudomallei by electroporation. Anal. Biochem. 242:73–76.PubMedCrossRefGoogle Scholar
  194. Mack, K., and Titball, R.W. (1998). The detection of insertion sequences within the human pathogen Burkholderia pseudomallei which have been identified previously in Burkholderia cepacia. FEMS Microbiol. Lett. 162:69–74.PubMedGoogle Scholar
  195. MacKnight, K., Chow, D., See, B., and Vedros, N. (1990). Melioidosis in a macaroni penguin Eudyptes chrysolophus. Dis. Aquat. Org. 9:105–107.Google Scholar
  196. Markovitz, A. (1979). Inoculation by bronchoscopy. West. Med. J. 131:550.Google Scholar
  197. Masoud, H., Ho, M., Schollaardt, T., and Perry, M.B. (1997). Characterization of the capsular polysaccharide of Burkholderia (Pseudomonas) pseudomallei 304b. J. Bacteriol. 179:5663–5669.PubMedGoogle Scholar
  198. Matsuura, M., Kawahara, K., Ezaki, T., and Nakano, M. (1996). Biological activities of lipopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. FEMS Microbiol. Lett. 137:79–83.PubMedGoogle Scholar
  199. Mays, E.E., and Ricketts, E.A. (1975). Melioidosis: recrudescence associated with bronchogenic carcinoma twenty-six years following initial geographic exposure. Chest 68:261–263.PubMedGoogle Scholar
  200. McCormick, J.B., Sexton, D.J., McMurray, J.G., Carey, E., Hayes, P., and Feldman, R.A. (1975). Human-to-human transmission of Pseudomonas pseudomallei. Ann. Intern. Med. 83:512–513.PubMedGoogle Scholar
  201. McCormick, J.B., Weaver, R.E., Hayes, P.S., Boyce, J.M., and Feldman, R.A. (1977). Wound infection by an indigenous Pseudomonas pseudomallei-like organism isolated from the soil: case report and epidemiologic study. J. Infect. Dis. 135:103–107.PubMedGoogle Scholar
  202. Merianos, A., Patel, M., Lane, J.M., Noonan, C.N., Sharrock, D., Mock, P.A., and Currie, B. (1993). The 1990–1991 outbreak of melioidosis in the Northern Territory of Australia: epidemiology and environmental studies. Southeast Asian J. Trop. Med. Public Health 24:425–435.PubMedGoogle Scholar
  203. Miller, R., and Clinger, D. (1961). Melioidosis pathogenesis in rabbits. I. In vivo studies in the rabbit ear chamber. Arch. Pathol. 71:629–634.PubMedGoogle Scholar
  204. Miller, W.R., Pannell, L., Cravitz, L., Tanner, W.A., and Ingalls, M.S. (1948a). Studies on certain biological characteristics of Malleomyces mallei and Malleomyces pseudomallei. I. Morphology, cultivation, viability, and isolation from contaminated specimens. J. Bacteriol. 55:115–126.PubMedGoogle Scholar
  205. Miller, W.R., Pannell, L., Cravitz, L., Tanner, W.A., and Rosebury, T. (1948b). Studies on certain biological characteristics of Malleomyces mallei and Malleomyces pseudomallei. II. Virulence and infectivity for animals. J. Bacteriol. 55:127–135.PubMedGoogle Scholar
  206. Miralles, I.S., Maciel, M.C.A, Angelo, M.R.F., Gondini, M.M., Frota, L.H.F., Reis, C.M.F., Hofer, E. (2004). Burkholderia pseudomallei: A case report of a human infection in Ceará, Brazil. Rev. Inst. Med. Trop. S. Paulo. 46:51–54.PubMedCrossRefGoogle Scholar
  207. Miyagi, K., Kawakami, K., and Saito, A. (1997). Role of reactive nitrogen and oxygen intermediates in gamma interferon-stimulated murine macrophage bactericidal activity against Burkholderia pseudomallei. Infect. Immun. 65:4108–4113.PubMedGoogle Scholar
  208. Mohamed, R Nathan, S., Embi, N., Razak, N., and Ismail, G. (1989). Inhibition of macromolecular synthesis in cultured macrophages by Pseudomonas pseudomallei exotoxin. Microbiol. Immunol. 33:811–820.PubMedGoogle Scholar
  209. Mollaret, H.H. (1988). “L’affaire du Jardin des Plantes” ou comment la mélioïdose fit son apparition en France. Mad. Mal. Infect. 18:643–654.CrossRefGoogle Scholar
  210. Moon, J.E., and van C. (1999). US biological warfare planning and preparedness: the dilemmas of policy. In: Geissler, E., and Moon, J.E. van C. (eds.), SIPRI Chemical and Biological Warfare Studies. 18. Biological and Toxin Weapons: Research, Development and Use from the Middle Ages to 1945. Oxford University Press, Oxford, pp. 215–254.Google Scholar
  211. Moore, R.A., DeShazer, D., Reckseidler, S., Weissman, A., and Woods, D.E. (1999). Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 43:465–470.PubMedGoogle Scholar
  212. Nachiangmai, N., Patamasucon, P., Tipayamonthein, B., Kongpon, A., and Nakaviroj, S. (1985). Pseudomonas pseudomallei in southern Thailand. Southeast Asian J. Trop. Med. Public Health. 16:83–87.PubMedGoogle Scholar
  213. Naigowit, P., Kurata, T., Wangroongsub, P., Petkanjanapong, V., Kondo, E., and Kanai, K. (1993). Application of indirect immunofluorescence microscopy to colony identification of Pseudomonas pseudomallei. Asian Pacific J. Allerg. Immunol. 11:149–154.Google Scholar
  214. Narita, M., Loganathan, P., Hussain, A., Jamaluddin, A., and Joseph, P.G. (1982). Pathological changes in goats experimentally inoculated with Pseudomonas pseudomallei. Nat. Inst. Animal Health Q. 22:170–179.Google Scholar
  215. Ngauy, V., Lemeshev, Y., Sadkowski, L., Crawford, G. (2005). Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J. Clin. Microbiol. 43:970–972.PubMedCrossRefGoogle Scholar
  216. Nierman, W.C., DeShazer, D., Kim, H.S., et al. (2004). Structural flexibility in the Burkholderia mallei genome. Proc. Nat. Acad. Sci. 101:14246–14251.PubMedCrossRefGoogle Scholar
  217. Nimtz, M., Wray, T., Domke, B., Brenneke, B., Häussler, S., and Steinmetz, I. (1997). Structure of an acidic exopolysaccharide of Burkholderia pseudomallei. Eur. J. Biochem. 250:608–616.PubMedCrossRefGoogle Scholar
  218. Niumsup, P., and Wuthiekanun, W. (2002). Cloning of the class D β-lactamase gene from Burkholderia pseudomallei and studies on its expression in ceftazidime-susceptible and resistant strains. J. Antimicrob. Chemother. 50:445–455.PubMedCrossRefGoogle Scholar
  219. Norton, R., Roberts, B., Freeman, M., Wilson, M., Ashurst-Smith, C., Lock, W., Brookes, D., and La Brooy, J. (1998). Characterisation and molecular typing of Burkholderia pseudomallei: are disease presentations of melioidosis clonally related? FEMS Immunol. Med. Microbiol. 20:37–44.PubMedCrossRefGoogle Scholar
  220. Nuntayanuwat, S., Dharakul, T., Chaowagul, W., and Songsivilai, S. (1999). Polymorphism in the promoter region of tumor necrosis factor-alpha gene is associated with severe melioidosis. Hum. Immunol. 60:979–983.PubMedCrossRefGoogle Scholar
  221. O’Carroll, M.R., Kidd, T.J., Coulter, C., Smith, H.V., Rose, B.R, Harbour, C., and Bell, S.C. (2003). Burkholderia pseudomallei: another emerging pathogen in cystic fibrosis. Thorax 58:1087–1091.PubMedCrossRefGoogle Scholar
  222. Office International des Épizooties (2003). Scholar
  223. O’Quinn, A.L., Wiegand, E.M., and Jeddeloh, J.A. (2001). Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol. 3:381–393.PubMedCrossRefGoogle Scholar
  224. Perry, M.B., MacLean, L.L., Schollaardt, T., Bryan, L.E., and Ho, M. (1995). Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei. Infect. Immun. 63: 3348–3352.PubMedGoogle Scholar
  225. Petkanjanapong, V., Naigowit, P., Kondo, E., and Kanai, K. (1992). Use of endotoxin antigens in enzyme-linked immunosorbent assay for the diagnosis of P. pseudomallei infections (melioidosis). Asian Pacific J. Allerg. Immunol. 10:145–150.Google Scholar
  226. Phung, L.V., Han, Y., Oka, S., Hotta, H., Smith, M.D., Theeparakun, P., Yabuuchi, E., and Yano, I. (1995). Enzyme-linked immunosorbent assay (ELISA) using a glycolipid antigen for the serodiagnosis of melioidosis. FEMS Immunol. Med. Microbiol. 12:259–264.PubMedCrossRefGoogle Scholar
  227. Pilourias, P., Ulett, G.C., Ashurst-Smith, C., Hirst, R.G., and Norton, R.E. (2002). A comparison of antibiotic susceptibility testing methods for cotrimoxazole with Burkholderia pseudomallei. Int. J. Antimicrob. Agents 19:427–429.CrossRefGoogle Scholar
  228. Pitt, T.L., Aucken, H., and Dance, D.A.B. (1992). Homogeneity of lipopolysaccharide antigens in Pseudomonas pseudomallei. J. Infect. 25:139–146.PubMedCrossRefGoogle Scholar
  229. Pitt, T.L., Trakulsomboon, S., and Dance, D.A.B. (2000). Molecular phylogeny of Burkholderia pseudomallei. Acta Trop. 74:181–185.PubMedCrossRefGoogle Scholar
  230. Poe, R.H., Vassallo, C.L., and Domm, B.M. (1971). Melioidosis: the remarkable imitator. Am. Rev. Respir. Dis. 104:427–431.PubMedGoogle Scholar
  231. Pongsunk, S., Ekpo, P., and Dharakul, T. (1996). Production of specific monoclonal antibodies to Burkholderia pseudomallei and their diagnostic application. Asian Pacific J. Allerg. Immunol. 14: 43–47.Google Scholar
  232. Pongsunk, S., Thirawattanasuk, N., Piyasangthong, N., and Ekpo, P. (1999). Rapid identification of Burkholderia pseudomallei in blood cultures by a monoclonal antibody assay. J. Clin. Microbiol. 37:3662–3667.PubMedGoogle Scholar
  233. Powell, K., Ulett, G, Hirst, R., and Norton, R. (2003). G-CSF immunotherapy for treatment of acute disseminated murine melioidosis. FEMS Microbiol. Lett. 224:315–318.PubMedCrossRefGoogle Scholar
  234. Pruksachartvuthi, S., Aswapokee, N., and Thankerngpol, K. (1990). Survival of Pseudomonas pseudomallei in human phagocytes. J. Med. Microbiol. 31:109–114.PubMedCrossRefGoogle Scholar
  235. Punyagupta, S. (1989). Melioidosis: review of 686 cases and presentation of a new clinical classification. In: Melioidosis. Bangkok Medical Publisher, Bangkok, pp. 217–229.Google Scholar
  236. Putucheary, S.D., Parasakthi, N., and Lee, M.K. (1992). Septicaemic melioidosis: a review of 50 cases from Malaysia. Trans. R. Soc. Trop. Med. Hyg. 86:683–685.CrossRefGoogle Scholar
  237. Puthucheary, S., Vadivelu, J., Ce-Cile, C., Kum-Thong, W., and Ismail, G. (1996). Short report: electron microscopic demonstration of extracellular structure of Burkholderia pseudomallei. Am. J. Trop. Med. Hyg. 54:313–314.PubMedGoogle Scholar
  238. Puthucheary, S., Vadivelu, J., Wong, K.T., and Ong, G.S.Y. (2001). Acute respiratory failure in melioidosis. Singapore Med. J. 42:117–121.PubMedGoogle Scholar
  239. Rajchanuvong, A., Chaowagul, W., Suputtamongkol, Y., Smith, M.D., Dance, D.A.B., and White, N.J. (1995). A prospective comparison of co-amoxiclav and the combination of chloramphenicol, doxycycline, and co-trimoxazole for the oral maintenance treatment of melioidosis. Trans. R. Soc. Trop. Med. Hyg. 89:546–549.PubMedCrossRefGoogle Scholar
  240. Rattanathongkom, A., Sermswan, R.W., and Wongratanacheewin, S. (1997). Detection of Burkholderia pseudomallei in blood samples using polymerase chain reaction. Mol. Cell. Probes 11:25–31.PubMedCrossRefGoogle Scholar
  241. Reckseidler, S.L., DeShazer, D., Sokol, P.A., and Woods, D.E. (2001). Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect. Immun. 69:34–44.PubMedCrossRefGoogle Scholar
  242. Rode, J.W., and Webling, D.D’A. (1981). Melioidosis in the Northern Territory of Australia. Med. J. Australia 1:181–184.PubMedGoogle Scholar
  243. Rogul, M., Brendle, J.J., Haapala, D.K., and Alexander, A.D. (1970). Nucleic acid similarities among Pseudomonas pseudomallei, Pseudomonas multivorans, and Actinobacillus mallei. J. Bacteriol. 101:827–835.PubMedGoogle Scholar
  244. Rotz, L.D., Khan, A.S., Lillibridge, S.R., Ostroff, S.M., and Hughes, J.M. (2002). Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis. 8:225–230.PubMedCrossRefGoogle Scholar
  245. Rugdech, P., Anuntagool, N., and Sirisinha, S. (1995). Monoclonal antibodies to Pseudomonas pseudomallei and their potential for diagnosis of melioidosis. Am. J. Trop. Med. Hyg. 52:231–235.PubMedGoogle Scholar
  246. Russell, P., Eley, S.M., Ellis, J., Green, M., Bell, D.L., Kenny, D.J., and Titball, R.W. (2000). Comparison of efficacy of ciprofloxacin and doxycycline against experimental melioidosis and glanders. J. Antimicrob. Chemother. 45:813–818.PubMedCrossRefGoogle Scholar
  247. Samosornsuk, N., Lulitanond, A., Saenla, N., Anuntagool, N., Wongratanacheewin, S., and Sirisinha, S. (1999). Short report: evaluation of a monoclonal antibody-based latex agglutination test for rapid diagnosis of septicemic melioidosis. Am. J. Trop. Med. Hyg. 61:735–737.PubMedGoogle Scholar
  248. Samuel, M, and Ti, Y. (2003). Interventions for treating melioidosis (Cochrane Methodology Review). In: The Cochrane Library, Issue 4. Chichester, UK: John Wiley & Sons, Ltd.Google Scholar
  249. Santanirand, P., Harley, V.S., Dance, D.A.B., Drasar, B.S., and Bancroft, G.J. (1999). Obligatory role of gamma interferon for host survival in a murine model of infection with Burkholderia pseudomallei. Infect. Immun. 67:3593–3600.PubMedGoogle Scholar
  250. Schlech, W.F., Turchik, J.B., Westlake, R.E., Klein, G.C., Band, J.D., and Weaver, R.E. (1981). Laboratory-acquired infection with Pseudomonas pseudomallei (melioidosis). N. Engl. J. Med. 305:1133–1135.PubMedCrossRefGoogle Scholar
  251. Sermswan, R.W., Wongratanacheewin, S., Anuntagool, N., and Sirisinha, S. (2000). Comparison of the polymerase chain reaction and serological tests for diagnosis of septicemic melioidosis. Am. J. Trop. Med. Hyg. 63:146–149.PubMedGoogle Scholar
  252. Sexton, M.M., Goebel, L.A., Godfrey, A.J., Chaowagul, W., White, N.J., and Woods, D.E. (1993). Ribotype analysis of Pseudomonas pseudomallei isolates. J. Clin. Microbiol. 31:238–243.PubMedGoogle Scholar
  253. Sexton, M.M., Jones, A.L., Chaowagul, W., and Woods, D.E. (1994). Purification and characterization of a protease from Pseudomonas pseudomallei. Can. J. Microbiol. 40:903–910.PubMedCrossRefGoogle Scholar
  254. Simpson, A.J.H., Suputtamongkol, Y., Smith, M.D., Angus, B.J., Rajanuwong, A., Wuthiekanun, V., Howe, P.A., Walsh, A.L., Chaowagul, W., and White, N.J. (1999). Comparison of imipenem and ceftazidime as therapy for severe melioidosis. Clin. Infect. Dis. 29:381–387.PubMedGoogle Scholar
  255. Simpson, A.J.H., Opal, S.M., Angus, B.J., Prins, J.M., Palardy, J.E., Parejo, N.A., Chaowagul, W., and White, N.J. (2000a). Differential antibiotic-induced endotoxin release in severe melioidosis. J. Infect. Dis. 181:1014–1019.PubMedCrossRefGoogle Scholar
  256. Simpson, A.J.H., Smith, M.D., Weverling, G.J., Suputtamongkol, Y., Angus, B.J., Chaowagul, W., White, N.J., van Deventer, S.J.H., and Prins, J.M. (2000b). Prognostic value of cytokine concentrations (tumour necrosis factor, interleukin 6 and interleukin 10) and clinical parameters in severe melioidosis. J. Infect. Dis. 181:621–625.PubMedCrossRefGoogle Scholar
  257. Simpson, A.J.H., Newton, P.J., Chierakul, W., Chaowagul, W., and White, N.J. (2003). Diabetes mellitus, insulin, and melioidosis in Thailand. Clin. Infect. Dis. 36:e71–72.PubMedCrossRefGoogle Scholar
  258. Simpson, A.J.H., and Wuthiekanun, V. (2000). Interaction of insulin with Burkholderia pseudomallei may be caused by a preservative. J. Clin Pathol. 53:159–160.PubMedCrossRefGoogle Scholar
  259. Sirisinha, S. (1991). Diagnostic value of serological tests for melioidosis in an endemic area. Asian Pacific J. Allerg. Immunol. 9:1–3.Google Scholar
  260. Smith, M.D., Wuthiekanun, V., Walsh, A.L., and Pitt, T.L. (1993). Latex agglutination test for identification of Pseudomonas pseudomallei. J. Clin. Pathol. 46:374–375.PubMedGoogle Scholar
  261. Smith, M.D., Wuthiekanun, V., Walsh, A.L., and White, N.J. (1994). Susceptibility of Pseudomonas pseudomallei to some newer β-lactam antibiotics and antibiotic combinations using time-kill studies. J. Antimicrob. Chemother. 33:145–149.PubMedGoogle Scholar
  262. Smith, M.D., Angus, B.J., Wuthiekanun, V., and White, N.J. (1997). Arabinose assimilation defines a nonvirulent biotype of Burkholderia pseudomallei. Infect Immun. 65:4319–4321.PubMedGoogle Scholar
  263. Smith, M.D., Suputtamongkol, Y., Chaowagul, W., Assicot, M., Bohoun, C., Petitjean, S., and White, N.J. (1995a). Elevated serum procalcitonin levels in patients with melioidosis. Clin. Infect. Dis. 20:641–645.PubMedGoogle Scholar
  264. Smith, M.D., Wuthiekanun, V., Walsh, A.L., Teerawattanasook, N., Desakorn, V. Suputtamongkol, Y., Pitt, T.L., and White, N.J. (1995b). Latex agglutination for rapid detection of Pseudomonas pseudomallei antigen in urine of patients with melioidosis. J. Clin. Pathol. 48:174–176.PubMedGoogle Scholar
  265. Smith, M.D., Wuthiekanun, V., Walsh, A.L., and White, N.J. (1996). In vitro action of carbapenem antibiotics against β-lactamase susceptible and resistant strains of Burkholderia pseudomallei. J. Antimicrob. Chemother. 37:611–615.PubMedGoogle Scholar
  266. Sodeman, W.A. (1994). Sherlock Holmes and tropical medicine: a centennial appraisal. Am. J. Trop. Med. Hyg. 50:99–101.PubMedGoogle Scholar
  267. Sookpranee, M., Boonma, P., Susaengrat, W., Bhuripanyo, K., and Punyagupta, S. (1992). Multicenter prospective randomised trial comparing ceftazidime plus co-trimoxazole with chloramphenicol plus doxycycline and co-trimoxazole for treatment of severe melioidosis. Antimicrob. Agents. Chemother. 36:158–162.PubMedGoogle Scholar
  268. Sprague, L.D., Zysk, G., Hagen, R.M., Meyer, H., Ellis, J., Anuntagool, N., Gauthier, Y., and Neubauer, H. (2002). A possible pitfall in the identification of Burkholderia mallei using molecular identification systems based on the sequence of the flagellin fliC gene. FEMS Immunol. Med. Microbiol. 34:231–236.PubMedGoogle Scholar
  269. Srinavasan. A., Kraus, C.N, DeShazer, D. Becker, P.M., Dick, J.D., Spacek, L, Bartlett, J.G., Byrne, W.R., and Thomas, D.L. (2001). Glanders in a military research microbiologist. N. Engl. J. Med. 345:256–258.CrossRefGoogle Scholar
  270. Stanton, A.T., and Fletcher, W. (1932). Studies from the Institute for Medical Research, Federated Malay States. 21. Melioidosis. John Bale & Sons and Danielson Ltd., London.Google Scholar
  271. Stanton, A.T., Fletcher, W., and Symonds, S.L. (1927). Melioidosis in a horse. J. Hyg. (Cambridge) 26:33–35.Google Scholar
  272. Steinmetz, I., Reganzerowski, A., Brenneke, B., Häussler, S., Simpson, A., and White, N.J. (1999). Rapid identification of Burkholderia pseudomallei by latex agglutination based on an exopolysaccharide-specific monoclonal antibody. J. Clin. Microbiol. 37:225–228.PubMedGoogle Scholar
  273. Steinmetz, I., Rohde, M., and Brenneke, B. (1995). Purification and characterization of an exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. Infect. Immun. 63:3959–3965.PubMedGoogle Scholar
  274. Stevens, M.P., Wood, M.W., Taylor, L.A., Monaghan, P., Hawes, P., Jones, P.W., Wallis, T.S., and Galyov, E.E. (2002). An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microbiol. 46:649–659.PubMedCrossRefGoogle Scholar
  275. Stevens, M.P., Friebel, A., Taylor, L.A., Wood, M.W., Brown, P.J., Hardt, W.D., and Galyov, E.E. (2003). A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J. Bacteriol. 185:4992–4996.PubMedCrossRefGoogle Scholar
  276. Strauss, J.M., Groves, M.G., Mariappan, M, and Ellison, D.W. (1969). Melioidosis in Malaysia. II. Distribution of Pseudomonas pseudomallei in soil and surface water. Am. J. Trop. Med. Hyg. 18:698–702.PubMedGoogle Scholar
  277. Sulaiman, S., Othman, M.Z., and Aziz, A.H. (2000). Isolations of enteric pathogens from synanthropic flies trapped in downtown Kuala Lumpur. J. Vector. Ecol. 25:90–93.PubMedGoogle Scholar
  278. Suputtamongkol, Y., Chaowagul, W., Chetchotisakd, P., Lertpatanasawun, N., Intaranongpai, S., Ruchutrakool, T., Budhsarawong, D., Mootsikapun, P., Wuthiekanun, V., Teerawattanasook, N., and Lulitanond, A. (1999). Risk factors for melioidosis and bacteremic melioidosis. Clin. Infect. Dis. 29:408–413.PubMedGoogle Scholar
  279. Suputtamongkol, Y., Hall, A.J., Dance, D.A.B., Chaowagul, W., Rajchanuvong, A., Smith, M.D., and White, N.J. (1994a). The epidemiology of melioidosis in Ubon Ratchatani, northeast Thailand. Int. J. Epidemiol. 23:1082–1090.PubMedGoogle Scholar
  280. Suputtamongkol, Y., Kwiatkowski, D., Dance, D.A.B., Chaowagul, W., and White, N.J. (1992). Tumor necrosis factor in septicemic melioidosis. J. Infect. Dis. 165:561–564.PubMedGoogle Scholar
  281. Suputtamongkol, Y., Rajchanuvong, A., Chaowagul, W., Dance, D.A.B., Smith, M.D., Wuthiekanun, V., Walsh, A.L., Pukrittayakamee, S., and White, N.J. (1994b). Ceftazidime vs. amoxycillin/clavulanate in the treatment of severe melioidosis. Clin. Infect. Dis. 19:846–853.PubMedGoogle Scholar
  282. Sura, T., Smith, M.D., Cowan, A.L. Walsh, A.L., White, N.J., and Krishna, S. (1997). Polymerase chain reaction for the detection of Burkholderia pseudomallei. Diagn. Microbiol. Infect. Dis. 29:121–127.PubMedCrossRefGoogle Scholar
  283. Thomas, A.D. (1983). Evaluation of the API 20E and Microbact 24E systems for the identification of Pseudomonas pseudomallei. Vet. Microbiol. 8:611–615.PubMedCrossRefGoogle Scholar
  284. Thomas, A.D., and Forbes-Faulkner, J.C. (1981). Persistence of Pseudomonas pseudomallei in soil. Aust. Vet. J. 57:535–536.PubMedGoogle Scholar
  285. Thomas, A.D., Forbes-Faulkner, J.C., Norton, J.H., and Trueman, K.F. (1988). Clinical and pathological observations on goats experimentally infected with Pseudomonas pseudomallei. Aust. Vet. J. 65:43–46.PubMedGoogle Scholar
  286. Tong, S., Yang, S., Lu, Z., and He, W. (1996). Laboratory investigation of ecological factors influencing the environmental presence of Burkholderia pseudomallei. Microbiol. Immunol. 40:451–453.PubMedGoogle Scholar
  287. Tribuddharat, C., Moore, R.A., Baker, P., and Woods, D.E. (2003). Burkholderia pseudomallei class A β-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition. Antimicrob. Agents Chemother. 47:2082–2087.PubMedCrossRefGoogle Scholar
  288. Tungpradabkul, S., Wajanarogana, S., Tunpiboonsak, S., and Panyim, S. (1999). PCR-RFLP analysis of the flagellin sequences for identification of Burkholderia pseudomallei and Burkholderia cepacia from clinical isolates. Mol. Cell. Probes. 13:99–105.PubMedCrossRefGoogle Scholar
  289. Ulett, G.C., Hirst, R., Bowden, B., Powell, K., and Norton, R. (2003). A comparison of antibiotic regimens in the treatment of acute melioidosis in a mouse model. J. Antimicrob. Chemother. 51:77–81.PubMedCrossRefGoogle Scholar
  290. Ulett, G.C., Ketheesan, N., and Hirst, R.G. (2000). Cytokine gene expression in innately susceptible BALB/c mice and relatively resistant C57BL/6 mice during infection with virulent Burkholderia pseudomallei. Infect. Immun. 68:2034–2042.PubMedCrossRefGoogle Scholar
  291. Utaisincharoen, P., Kespichayawattana, W., Anuntagool, N., Chaisuriya, P., Pichyangkul, S., and Sirisinha, S. (2003). CpG ODN enhances uptake of bacteria by mouse macrophages. Clin. Exp. Immunol. 132:70–75.PubMedCrossRefGoogle Scholar
  292. Utaisincharoen, P., Tangthawornchaikul, N., Kespichayawattana, W., Chaisuriya, P., and Sirisinha, S. (2001). Burkholderia pseudomallei interferes with inducible nitric oxide synthase (iNOS) production: a possible mechanism of evading macrophage killing. Microbiol. Immunol. 45:307–313.PubMedGoogle Scholar
  293. Vadivelu, J., and Putucheary, S.D. (2000). Diagnostic and prognostic value of an immunofluorescent assay for melioidosis. Am. J. Trop. Med. Hyg. 62:297–300.PubMedGoogle Scholar
  294. Vadivelu, J., Putucheary, S.D., Gendeh, G.S., and Parasakthi, N. (1995). Serodiagnosis of melioidosis in Malaysia. Singapore Med. J. 36:299–302.PubMedGoogle Scholar
  295. Vasu, C., Vadivelu, J., and Putucheary, S.D. (2003). The humoral response in melioidosis patients during therapy. Infection 31:24–30.PubMedCrossRefGoogle Scholar
  296. Vatcharapreechasakul, T., Suputtamongkol, Y., Dance, D.A.B., Chaowagul, W., and White, N.J. (1992). Pseudomonas pseudomallei liver abscesses: a clinical, laboratory, and ultrasonographic study. Clin. Infect. Dis. 14:412–417.PubMedGoogle Scholar
  297. Vesselinova, A., Najdenski, H., Nikolova, S., and Kussovski, V. (1996). Experimental melioidosis in hens. J. Vet. Med. 43:371–378.CrossRefGoogle Scholar
  298. Vora, S.K. (2002). Sherlock Holmes and a biological weapon. J. R. Soc. Med. 95:101–103.PubMedCrossRefGoogle Scholar
  299. Vorachit, M., Lam, K., Jayanetra, P., and Costerton, J.W. (1993). Resistance of Pseudomonas pseudomallei growing as a biofilm on silastic discs to ceftazidime and co-trimoxazole. Antimicrob. Agents Chemother. 37:2000–2002.PubMedGoogle Scholar
  300. Vorachit, M., Lam, K., Jayanetra, P., and Costerton, J.W. (1995). Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. J. Trop. Med. Hyg. 98:379–391.PubMedGoogle Scholar
  301. Vuddhakul, V., Tharavichitkul, P., Na-Ngam, N., Jitsurong, S., Kunthawa, B., Noimay, P., Noimay, P., Binla, A., and Thamlikitkul, V. (1999). Epidemiology of Burkholderia pseudomallei in Thailand. Am. J. Trop. Med. Hyg. 60:458–461.PubMedGoogle Scholar
  302. Walsh, A.L., Smith, M.D., Wuthiekanun V., Suputtamongkol, Y., Chaowagul, W., Dance, D.A.B., Angus, B., and White, N.J. (1995a). Prognostic significance of quantitative bacteraemia in septicemic melioidosis. Clin. Infect. Dis. 21:1498–1500.PubMedGoogle Scholar
  303. Walsh, A.L., Smith, M.D., Wuthiekanun, V., Suputtamongkol, Y., Desakorn, V., Chaowagul, W., and White, N.J. (1994). Immunofluorescence microscopy for the rapid diagnosis of melioidosis. J. Clin. Pathol. 47:377–399.PubMedGoogle Scholar
  304. Walsh, A.L., Smith, M.D., Wuthiekanun, V., and White, N.J. (1995b). Postantibiotic effects and Burkholderia (Pseudomonas) pseudomallei: evaluation of current treatment. Antimicrob. Agents Chemother. 39:2356–2358.PubMedGoogle Scholar
  305. Walsh, A.L., Wuthiekanun, V., Smith, M.D. Suputtamongkol, Y., and White, N.J. (1995c). Selective broths for the isolation of Pseudomonas pseudomallei from clinical samples. Trans. R. Soc. Trop. Med. Hyg. 89:124.PubMedCrossRefGoogle Scholar
  306. Warawa, J., and Woods, D.E. (2002). Melioidosis vaccines. Expert. Rev. Vaccines 1:477–482.PubMedCrossRefGoogle Scholar
  307. Wheelis, M. (1999). Biological sabotage in World War I. In: Geissler, E., Moon, J.E. van C. (eds.), SIPRI Chemical and Biological Warfare Studies. 18. Biological and Toxin Weapons: Research, Development and Use from the Middle Ages to 1945. Oxford University Press, Oxford, pp. 35–62.Google Scholar
  308. White, N.J. (2003). Melioidosis. Lancet 361:1715–1722.PubMedCrossRefGoogle Scholar
  309. White, N.J., Dance, D.A.B., Chaowagul, W., Wattanagoon, Y., Wuthiekanun, V., and Pitakwatchara, N. (1989). Halving of mortality of melioidosis by ceftazidime. Lancet ii:697–700.CrossRefGoogle Scholar
  310. Whitmore, A. (1913). An account of a glanders-like disease occurring in Rangoon. J. Hyg. XIII:1–34.CrossRefGoogle Scholar
  311. Winstanley, C., Hales, B.A., and Hart, C.A. (1999). Evidence for the presence in Burkholderia pseudomallei of a type III secretion system associated gene cluster. J. Med. Microbiol. 48:649–656.PubMedGoogle Scholar
  312. Winstanley, C., and Hart, C.A. (2000). Presence of type III secretion genes in Burkholderia pseudomallei correlates with ara- phenotypes. J. Clin. Microbiol. 38:883–885.PubMedGoogle Scholar
  313. Wong, K.T., Puthucheary, S.D., and Vadivelu, J. (1995). The histopathology of human melioidosis. Histopathology 26:51–55.PubMedGoogle Scholar
  314. Wong, K.T., Vadivelu, J., Puthucheary, S.D., and Tan, K.L. (1996). An immunohistochemical method for the diagnosis of melioidosis. Pathology 28:188–191.PubMedCrossRefGoogle Scholar
  315. Wongprompitak, P., Thepthai, C., Songsivilai, S., and Dharakul, T. (2001). Burkholderia pseudomalleispecific recombinant protein and its potential in the diagnosis of melioidosis. Asian Pacific J. Allerg. Immunol. 19:37–41.Google Scholar
  316. Wongratanacheewin, S., Sermswan, R.W, Anuntagool, N., and Sirisinha, S. (2001). Retrospective study on the diagnostic value of IgG ELISA, dot immunoassay and indirect haemagglutination in septicemic melioidosis. Asian Pacific J. Allerg. Immunol. 19:129–133.Google Scholar
  317. Wongratanacheewin, S., Tattawasart, U., Lulitanond, V., Wongwajana, S., Sermswan, R.W., Sookpranee, M., and Nuntirooj, K. (1993). Characterization of Pseudomonas pseudomallei antigens by SDS-polyacrylamide gel electrophoresis and western blot. Southeast Asian J. Trop. Med. Pub. Health 24:107–113.Google Scholar
  318. Woo, P.C.Y., Woo, G.K.S., Lau, S.K.P., Wong, S.S.Y., and Yuen, K.Y. (2002). Single gene target bacterial identification: groEL gene sequencing for discriminating clinical isolates of Burkholderia pseudomallei and Burkholderia thailandensis. Diagn. Microbiol. Infect. Dis. 44:143–149.PubMedCrossRefGoogle Scholar
  319. Woods, D.E. (2002). The use of animal infection models to study the pathogenesis of melioidosis and glanders. Trends Microbiol. 10:483–484.PubMedCrossRefGoogle Scholar
  320. Woods, M.L., Currie, B.J., Howard, D.M., Tierney, A., Watson, A., Anstey, N.M., Philpott, J., Asche, V., and Withnall, K. (1992). Neurological melioidosis: seven cases from the Northern Territory of Australia. Clin. Infect. Dis. 15:163–169.PubMedGoogle Scholar
  321. Woods, D.E., DeShazer, D., Moore, R.A., Brett, P.J., Burtnick, M.J., Reckseidler, S.L., and Senkiew, M.D. (1999). Current studies on the pathogenesis of melioidosis. Microb. Infect. 2:157–162.CrossRefGoogle Scholar
  322. Woods, D.E., Jeddeloh, J.A., Fritz, D.L., and DeShazer, D. (2002). Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J. Bacteriol. 184:4003–4017.PubMedCrossRefGoogle Scholar
  323. Woods, D.E., Jones, A.L., and Hill, P.J. (1993). Interaction of insulin with Pseudomonas pseudomallei. Infect. Immun. 61:4045–4050.PubMedGoogle Scholar
  324. Wuthiekanun, V., Dance, D.A.B., Wattanagoon, Y., Supputtamongkol, Y., Chaowagul, W., and White, N.J. (1990). The use of selective media for the isolation of Pseudomonas pseudomallei in clinical practice. J. Med. Microbiol. 33:121–126.PubMedGoogle Scholar
  325. Wuthiekanun, V., Anuntagool, N., White, N.J., and Sirisinha, S. (2002). Short report: a rapid method for the differentiation of Burkholderia pseudomallei and Burkholderia thailandensis. Am. J. Trop. Med. Hyg. 66:759–761.PubMedGoogle Scholar
  326. Wuthiekanun, V., Smith, M.D., Dance, D.A.B., Walsh, A.L., Pitt, T.L., and White, N.J. (1996). Biochemical characteristics of clinical and environmental isolates of Burkholderia pseudomallei. J. Med. Microbiol. 45:408–412.PubMedCrossRefGoogle Scholar
  327. Wuthiekanun, V., Smith, M.D., Dance D.A., and White, N.J. (1995a). Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans. R. Soc. Trop. Med. Hygiene 89:41–43.CrossRefGoogle Scholar
  328. Wuthiekanun, V., Smith, M.D., and White, N.J. (1995b). Survival of Burkholderia pseudomallei in the absence of nutrients. Trans. R. Soc. Trop. Med. Hyg. 89:491.PubMedCrossRefGoogle Scholar
  329. Wuthiekanun, V., Suputtamongkol, Y., Simpson, A.J.H., Kanaphun, P., and White, N.J. (2001). Value of throat swab in the diagnosis of melioidosis. J. Clin. Microbiol. 39:3801–3802.PubMedCrossRefGoogle Scholar
  330. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I, Hotta, H., Hashimoto, Y., Ezaki, T., and Arakawa, M. (1992). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36:1251–1275.PubMedGoogle Scholar
  331. Yang, H., Chaowagul, W., and Sokol, P.A. (1991). Siderophore production by Pseudomonas pseudomallei. Infect. Immun. 59:776–780.PubMedGoogle Scholar
  332. Yang, H., Kooi, C.D., and Sokol, P.A. (1993). Ability of Pseudomonas pseudomallei malleobactin to acquire transferrin-bound, lactoferrin-bound, and cell-derived iron. Infect. Immun. 61:656–62.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • David Allan Brett Dance
    • 1
  1. 1.Health Protection Agency, Department of MicrobiologyDerriford HospitalPlymouth, DevonUK

Personalised recommendations