Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 255))

  • 1004 Accesses

Abstract

Cardiovascular magnetic resonance (CMR) is an extremely useful tool to study congenital heart disease, as it has the main advantages of both echocardiography and conventional angiography. Like ultrasound, CMR is a noninvasive technique providing accurate morphological information on the heart and, as angiography, it allows the study of extracardiac vascular structures. This latter characteristic is very important, because it permits to evaluate the ventriculo-arterial connections, the position and relationship between the great arteries and the drainage of the systemic and pulmonary veins. An additional advantage of CMR that should be noted is its excellent image quality in the majority of patients, including adults and those who have been submitted to surgical cardiac correction, as it does not require a particular window to obtain adequate images, neither it has limitations in the orientation of views, and it can produce images in any desired plane of the hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higgins ChB, Byrd BF, Farmer DW, Osaki L, Silverman NH, Cheitlin MD. Magnetic resonance imaging in patients with congenital heart disease. Circulation 1984; 70: 851–860.

    PubMed  CAS  Google Scholar 

  2. Chung KJ, Simpson IA, Newman R. Sahn DJ, Sherman FS, Hesselink JR. Cine magnetic resonance imaging for evaluation of congenital heart disease: role in pediatric cardiology compared with echocardiography and angiography. J Pediatr 1988; 113: 1.028–1.035.

    Google Scholar 

  3. Simpson IA, Sahn DJ, Chung KJ. Noninvasive evaluation of congenital heart disease: Doppler ultrasound or magnetic resonance imaging. Echocardiography 1986; 6: 125–129.

    Google Scholar 

  4. Didier D, Ratib 0, Beghetti M, Oberhaensli I, Friedli B. Morphologic and Functional Evaluation of Congenital Heart Disease by Magnetic Resonance Imaging. J Magn Reson Imaging, 1999; 10:639–55.

    Article  PubMed  CAS  Google Scholar 

  5. Roest AW, Helbing WA, van der Wall EE, de Roos A. Postoperative Evaluation of Congenital Heart Disease by Magnetic Resonance Imaging. J Magn Reson Imaging, 1999; 10: 656–666.

    Article  PubMed  CAS  Google Scholar 

  6. Boxt LM. Magnetic Resonance And Conmputed Tomographic Evaluation of Congenital Heart Disease. J Magn Reson Imaging, 2004; 19:827–847.

    Article  PubMed  Google Scholar 

  7. Weinberg PM, Fogel MA. Cardiac MR imaging in congenital heart disease. Cardiol Clin 1998; 16: 315–348.

    Article  PubMed  CAS  Google Scholar 

  8. Hartnell GG, Cohen MC, Meier RA, Finn JP. Magnetic resonance angiography demonstration of congenital heart disease in adults. Clin Radiol 1996; 51: 851–857.

    Article  PubMed  CAS  Google Scholar 

  9. Hirsch R, Kilner PJ, Conelly MS, Redington AN, St John Sutton MG, Sommerville J. Diagnosis in adolescents and adults with congenital heart disease. Prospective assessment of individual and combined roles of magnetic resonance imaging and transesophageal echocardiography. Circulation 1994; 90: 2.937–2.951.

    Google Scholar 

  10. Boothroyd A. Magnetic resonance—its current and future role in paediatric cardiac radiology. Eur J Radiol. 1998; 26: 154–62.

    Article  PubMed  CAS  Google Scholar 

  11. Kersting-Sommerhoff BA, Diethelm L, Stanger P, Dery R, Higashino SM, Higgins SS, Higgins CB. Evaluation of complex congenital ventricular anomalies with magnetic resonance imaging. Am HeartJ 1990; 120: 133–142.

    Article  CAS  Google Scholar 

  12. Masui T, Seelos KC, Kersting-Sommerhoff BA, Higgins ChB. Abnormalities of the pulmonary veins: evaluation with MR imaging and comparison with cardiac angiography and echocardiography. Radiology 1991; 181: 645–649.

    PubMed  CAS  Google Scholar 

  13. Julsrud PR, Ehman RL. The ‘broken ring’ sign in magnetic resonance imaging of partial anomalous pulmonary venous connection to the superior vena cava. Mayo Clin Proc 1985; 60: 874–879.

    PubMed  CAS  Google Scholar 

  14. Wight CM, Barrat-Boyes BG, Calder AL, Neutze JM, Brandt PW. Total anomalous pulmonary venous connection: long-term results following repair in infancy. J Thorac Cardiovasc Sur 1977; 75: 52–63.

    Google Scholar 

  15. Katz NM, Kirklin JW, Pacifico AD. Concepts and practices in surgery for total anomalous pulmonary venous connection. Ann Thorac Surg 1978; 25: 479–487.

    Article  PubMed  CAS  Google Scholar 

  16. Gomes AS, Lois JF, Williams RG. Pulmonary arteries: MR imaging in patients with congenital obstruction of the right ventricular outflow tract. Radiology 1990; 174: 51–57.

    PubMed  CAS  Google Scholar 

  17. Rees S, Firmin D, Mohiaddin R, Underwood R, Longmore D. Application of flow measurements by magnetic resonance velocity mapping to congenital heart disease. Am J Cardiol 1989; 64:953–956.

    Article  PubMed  CAS  Google Scholar 

  18. Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Higgins ChB. Cardiovascular Shunts: MR Imaging Evaluation RadioGraphics 2003; 23: 181–194.

    Google Scholar 

  19. Diethelm L, Dery R, Lipton MJ, Higgins CB. Atrial-level shunts: sensitivity and specificity of MR diagnosis. Radiology 1987; 162: 181–186.

    PubMed  CAS  Google Scholar 

  20. Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, and Geva T. Comparison Between Phase-Velocity Cine Magnetic Resonance Imaging and Invasive Oximetry for Quantification of Atrial Shunts. Am J Cardiol, 2003; 91: 1523–5

    Article  PubMed  Google Scholar 

  21. Brenner LD, Caputo GR, Mostbeck G, Steiman D, Dulce M, Cheitlin MD, O’sullivan M, Higgins CB. Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. JAm Coll Cardiol 1992; 20: 1.246–1.250.

    Google Scholar 

  22. Baker EJ, Ayton V, Smith MA, Parsons JM, Ladusans EJ, Anderson RH, Maisey MN, Tynan M, Fagg NK. Magnetic resonance imaging at a high field strength of ventricular septal defects in infants. Br HeartJ 1989; 62: 305–310.

    CAS  Google Scholar 

  23. Didier D, Higgins CB. Identification and localization of ventricular septal defect by gated magnetic resonance imaging.AmJ Cardiol 1986; 57: 1.363–1.368.

    Article  Google Scholar 

  24. Parsons JM, Baker EJ, Anderson RH, Ladusans EJ, Hayes A, Qureshi SA, Deverall PB, Fagg N, Cook A, Maisey MN, et al. Morphological evaluation of atrioventricular septal defects by magnetic resonance imaging. Br Heart J. 1990.64(2):138–45

    PubMed  CAS  Google Scholar 

  25. Wenink ACG, Ottenkamp J, Guit GL, Draulans Noe Y, Doombos J. Correlation of morphology of the left ventricular outflow tract with two-dimensional Doppler echocardiography and magnetic resonance imaging in atrioventricular septal defect. Am J Cardiol 1989; 63: 1.1371.140.

    Article  Google Scholar 

  26. Chien CT, Lin CS, Hsu YH, Lin MC, Chen KS, Wu DJ. Potencial diagnosis of hemodinamic abnormalities in patent ductus arteriosus by cine magnetic resonance imaging. Am Heart J 1991; 122: 1.065–1.072.

    Google Scholar 

  27. Schmid M, Theissen P, Deutsch HJ, Erdmann E, Schicha H. Magnetic Resonance Imaging of Ductus Arteriosus Botalli apertus in adulthood. Int J cardiol, 1999; 68:225–9.

    Article  Google Scholar 

  28. Kilner PJ, Firmin DN, O’Rees RS, Martinez J, Penell DJ, Mohiaddin RH, Underwood SR, Longmore DB. Valve and great vessels stenosis: assessment with MR jet velocity mapping. Radiology 1991; 178: 229–235.

    PubMed  CAS  Google Scholar 

  29. Markiewicz W, Sechtem U, Higgins CB. Evaluation of the right ventricle by magnetic resonance imaging. Am HeartJ 1987; 113: 8–14.

    Article  CAS  Google Scholar 

  30. Wesley Vick III G, Rokey R, Huhta JC, Mulvagh SL, Johnston DL. Nuclear magnetic resonance imaging of the pulmonary arteries, subpulmonar region, and aortopulmonary shunts: a comparative study with two-dimensional echocardiography and angiography. Am Heart J 1990; 119: 1.103–1.110.

    Google Scholar 

  31. Baker EJ, Ayton V, Smith MA, Parsons JM, Maisey MN, Ladusans EJ, Anderson RE, Tynan M, Yates AK, Deverall PB. Magnetic resonance imaging at high field strength of ventricular septal defects in infants Br HeartJ 1989; 62: 97–101.

    CAS  Google Scholar 

  32. Steffens JC, Bourne MW, Sakuma H, MOS, Higgins CB. Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation, 1994; 90: 937–43

    PubMed  CAS  Google Scholar 

  33. Teien DE, Wendel H, Björnebrink J, Ekelund L. Evaluation of anatomical obstruction by Doppler echocardiography and magnetic resonance imaging in patients with coarctation of the aorta. Br Heart J 1993; 69: 352–355.

    PubMed  CAS  Google Scholar 

  34. Mirowitz SA, Gutierrez FR, Canter CE, Vannier MW. Tetralogy of Fallot: MR imaging. Radiology 1989; 171: 207–212.

    PubMed  CAS  Google Scholar 

  35. Davlouros PA, Kilner PhJ, Hornung TS, Li W, Francis JM, Moon JCC, Smith GC, Tat T, Pennell DJ, Gatzoulis MA. Right Ventricular Function in Adults With Repaired Tetralogy of fallot Assessed With Cardiovascular Magnetc Resonance Imaging: Detrimental Role of Right Ventricular Outflow Aneurysms or Akinesia and Adverse Right-to-Left Ventricuar Interaction. J Am Coll Cardiol, 2002; 40:2044–52.

    Article  PubMed  Google Scholar 

  36. Sechtem U, Jungehulsing M, de Vivie R, Mennicken U, Hopp HW. Left hemitruncus in adulthood: diagnostic role of magnetic resonance imaging. Eur Heart J 1991; 12: 1.040–1.044.

    Google Scholar 

  37. Ichida F, Hashimoto I, Tsubata S, Hamamichi Y, Uese K, Murakami A, Miyawaki T. Evaluation of pulmonary blood supply by multiplanar cine magnetic resonance imaging in patients with pulmonary atresia and severe pulmonary stenosis. Int J Card Imaging, 1999;15(6):473–81.

    Article  PubMed  CAS  Google Scholar 

  38. Mustard WT. Successful two-stage correction of transposition of the great vessels. Surgery 1964; 55: 469–472.

    PubMed  CAS  Google Scholar 

  39. Senning A. Surgical correction of transposition of the great vessels. Surgery 1959; 45: 966–969.

    PubMed  CAS  Google Scholar 

  40. Campbell RM, Moreau GA, Johns JA, Burger JD, Mazer M, Graham TP, Kulkarni MV. Detection of caval obstruction by magnetic resonance imaging after intraatrial repair of transposition of the great arteries. Am J Cardiol 1987; 60: 688–691.

    Article  PubMed  CAS  Google Scholar 

  41. Jatene AD, Fontes VF, Souza LCB, Paulista PPA, Abdulmassih N, Soussa JEMR. Anatomic correction of transposition of the great arteries. J Thorac Cardiovasc Surg 1982; 83: 20–26.

    PubMed  CAS  Google Scholar 

  42. Fogel MA, Donofrio MT, Ramaciotti C, Hubbard AM, Weinberg PM. Magnetic resonance and echocardiographic imaging of pulmonary artery size throught stages of Fontan reconstruction. Circulation 1994; 90: 2.927–2.936.

    Google Scholar 

  43. Julsrud PR, Ehmann RL, Hagler DJ, Ilstrup DM. Extracardiac vasculature in candidate for Fontan surgery: MR imaging. Radiology 1989; 173: 503–506.

    PubMed  CAS  Google Scholar 

  44. Canter E, Gutierrez FR, Molina P, Hartmann AF, Spray TL. Noninvasive diagnosis of right-sided extracardiac conduit obstructon by combined magnetic resonance imaging and continuous-wave Doppler echocardiography. J Thorac Cardiovasc Surg 1991; 101: 724–731.

    PubMed  CAS  Google Scholar 

  45. Donelly LF, Strife JL, Bailey WW. Extrinsic airway compresion secondary to pulmonary arterial conduits: MR findings. Pediatr Radiol 1997; 27: 268–270.

    Article  Google Scholar 

  46. Rebergen SA, Ottenkamp J, Doombos J, van der Wall EE, Chin JGJ, de Roos A. Post-operative pulmonary flow dinamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 1993; 21: 123–131.

    Article  PubMed  CAS  Google Scholar 

  47. Huggon IC, Baker EJ, Maisey MN, Kakadekar AP, Graves P, Qureshi P, Tynan M. Magnetic resonance imaging of hearts with atrioventricular valve atresia or double inlet ventricle. Br HeartJ 1992; 68: 313–319.

    CAS  Google Scholar 

  48. Yoo SJ, Lim TH, Park IS, Hong CY, Song MG, Kim SH, Lee JH. MR anatomy of ventricular septal defect in double-outlet right ventricle with situs solitus and atrioventricular concordance. Radiology 1991; 181: 501505.

    Google Scholar 

  49. Jacobstein MD, Fletcher BD, Nelson D, Clampitt M, Alfidi RJ, Riemenschneider TA. Magnetic resonance imaging: evaluation of palliative systemic-pulmonary artery shunts. Circulation 1984; 70: 650–656.

    PubMed  CAS  Google Scholar 

  50. Simpson IA, Valdes-Cruz LM, Berthoty DP, Powell JB, Hesslink JR, Chung KJ, Sahn DJ. Cine magnetic resonance imaging and color Doppler flow mapping in infants and childres with pulmonary artery bands. Am J Cardiol 1993; 71: 1.419–1.426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Subirana, M., Borrás, X. (2005). Congenital Heart Disease. In: Pons-Lladó, G., Carreras, F. (eds) Atlas of Practical Applications of Cardiovascular Magnetic Resonance. Developments in Cardiovascular Medicine, vol 255. Springer, Boston, MA. https://doi.org/10.1007/0-387-23634-1_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-23634-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23632-2

  • Online ISBN: 978-0-387-23634-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics