Skip to main content

Adsorption Isotherms

  • Chapter

Abstract

A short overview of adsorption isotherms often used (i) to correlate adsorption equilibria data for sorbent materials characterization and (ii) for design of industrial gas adsorption processes is given. The basic types of adsorption isotherms observed experimentally are discussed in brief. The Langmuir adsorption isotherm (LAI) and certain of its extensions to (energetically) heterogeneous sorbent materials and to admolecules with interactions are presented (Sect. 2). Several empirical isotherms used for micro- and mesoporous materials showing pore condensation are discussed in Sect. 3 briefly. In Sect. 4 an outline of thermodynamics of adsorbate phases of fractal dimension is given. Several isotherms are presented which are generalizations of well-known isotherms (Langmuir, BET, etc.) to multicomponent adsorbates on heterogeneous surfaces. These isotherms are solutions of Maxwell’s relations of the underlying Gibbs fundamental equation of the adsorbed phase. List of symbols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregg S. J., Sing K. S. W. Adsorption, Surface Area and Porosity, Academic Press, London etc., 1982.

    Google Scholar 

  2. Ruthven D. M. Principles of Adsorption and Adsorption Processes, J. Wiley & Sons, New York etc., 1984.

    Google Scholar 

  3. Do D. D. Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.

    Google Scholar 

  4. Kast W. Adsorption aus der Gasphase, Ingenieurwissenschaftliche Grundlagen und technische Verfahren, Verlag Chemie, Wertheim, Germany, 1988.

    Google Scholar 

  5. Rouquerol F., Rouquerol J., Sing K.S.W. Adsorption by Powders and Porous Solids, Academic Press, San Diego, USA, 1999.

    Google Scholar 

  6. Steele W. The Interaction of Gases with Solid Surfaces, Pergamon, New York, 1974.

    Google Scholar 

  7. Adamson A. W., Gast A. P. Physical Chemistry of Surfaces, J. Wiley & Sons, 6th Ed., New York, 1997.

    Google Scholar 

  8. Neimark A. V., Ravikovitch P. I. Calibration of Adsorption Theories, Fundamentals of Adsorption 6, p. 159–164, F. Meunier, Ed., Elsevier, Paris, 1998.

    Google Scholar 

  9. Keller J. U., Zimmermann W., Schein A. Determination of Absolute Gas Adsorption Isotherms by Combined Calorimetric and Dielectric Measurements, Adsorption, 9 (2003), p. 177–188.

    Article  CAS  Google Scholar 

  10. Yang R. Gas Separation by Adsorption Processes, Imperial College Press, London, 1997.

    Google Scholar 

  11. Mersmann A. B., von Gemmingen U. Equilibria in Pressure Swing Adsorption Processes — Experimental and Theoretical Needs Fundamental of Adsorption 6, p. 1001–1008, M. D. Le Van, Ed., FoA5 Conference, Asilomar, 1995, Kluwer Academic Publishers Group, Dordrecht, Netherlands, 1996.

    Google Scholar 

  12. Sing K.S.W. et al. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, IUPAC Recommendations 1984, Pure & Appl. Chem., 57 (1985), 603–619.

    CAS  Google Scholar 

  13. Rouquerol J., Sing K.S.W. et al. Guidelines for the Characterization of Porous Solids, article in: Characterization of Porous Solids III, J. Rouquerol et al. (Eds.), Elsevier, Amsterdam, 1994.

    Google Scholar 

  14. International Standardization Organization (ISO), Geneva Working Group ISO/TC24/SC4, “Determination of the specific surface area of solids by gas adsorption using the BET method”, ISO 9277: 1995.

    Google Scholar 

  15. Rudzinski W., Panczyk T. Phenomenological Kinetics of Real Gas-Adsorption-Systems: Isothermal Adsorption, J. Non.-Equilib. Thermodyn., 27 (2002), p. 149–204.

    Article  CAS  Google Scholar 

  16. Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinium, J. American Chem. Soc., 40 (1918), p. 1361–1403.

    Article  CAS  Google Scholar 

  17. Sandler S. I. Chemical and Engineering Thermodynamics, J. Wiley & Sons, Inc., New York etc., 3rd Ed., 1999.

    Google Scholar 

  18. Valenzuela D. P., Myers A. L. Adsorption Equilibrium Data Handbook, Prentice Hall, New Jersey, 1989.

    Google Scholar 

  19. Kärger J., Ruthven D. M. Diffusion in Zeolites and Other Microporous Solids, J. Wiley & Sons, New York, 1992.

    Google Scholar 

  20. Panczyk T., Rudzinski W. Phenomenological Kinetics of Real Gas Adsorption Systems: Isothermal Kinetics and Kinetics of Thermodesorption, J. Non-Equilib. Thermodynamics, 28 (2003), 341–397.

    Article  CAS  Google Scholar 

  21. Yang R. T. Adsorbents, Fundamentals and Applications, Wiley-Interscience, Hoboken, New Jersey, 2003.

    Google Scholar 

  22. Rudzinski W., Everett D. H. Adsorption of gases on heterogeneous surfaces, Academic Press, London etc., 1992.

    Google Scholar 

  23. Staudt R. „Analytische und experimentelle Untersuchungen von Adsorptionsgleichgewichten von reinen Gasen und Gasgemischen an Aktivkohlen und Zeolithen.“, PHD-Thesis, IFT, University of Siegen, Siegen, 1994.

    Google Scholar 

  24. Dreisbach F. „Untersuchung von Adsorptionsgleichgewichten methanhaltiger Gasgemische an Aktivkohle als Grundlage zur Auslegung technischer Adsorptionsanlagen“ PHD-Thesis, IFT University of Siegen, Siegen, 1998, cp. also Fortschritt-Berichte VDI, Reihe 3, Verfahrenstechnik, No. 547, VDI-Verlag, Düsseldorf, 1998.

    Google Scholar 

  25. He R., Zimmermann W., Keller J. U., Roehl-Kuhn B., Jakob J., Heil V., Kümmel R. Characterization of Impregnated Activated Carbon SC-44, AIChE Annual Meeting 2003, San Francisco, Poster 320 C, cp. also AIF-Research Project 46 Z, Final Report, “Imprägnierung mikroporöser Substanzen aus der überkritischen Phase”, Technische Zentralbibliothek Hannover, Hannover 2003.

    Google Scholar 

  26. Kaneko K., Kanoh H, Hanzawa Y., Eds. Fundamentals of Adsorption 7 Proceedings of FoA 7 Conference, Nagasaki, May 2001, IK International, Chiba, Japan 2002.

    Google Scholar 

  27. Kaneko K., Kanoh H, Hanzawa Y., Eds. Fundamentals of Adsorption 7 Proceedings of FoA 7 Conference, Nagasaki, May 2001, IK International, Chiba, Japan 2002.

    Google Scholar 

  28. Fowler R. H., Guggenheim E. A. Statistical Thermodynamics, Cambridge University Press, London, 1939.

    Google Scholar 

  29. Keller J. U., Popernack J. D., Staudt R. A Generalization of Langmuir’s Adsorption Isotherm to Admolecules with Interaction, Adsorption Science and Technology, Proceedings of 2nd Pacific Basin Conference on Adsorption, Brisbane, May 2000, D. D. Do, Ed., p. 336, World Scientific, Singapore, 2000.

    Google Scholar 

  30. Staudt R., Dreisbach F., Keller J. U. Generalized Isotherms for Mono-and Multicomponent Adsorption, Fundamentals of Adsorption, Proceedings of FoA Conference, May 1995, Asilomar, p. 865–872, M. D. Le Van, Ed., Kluwer Academic Publishers, Boston, MA, 1996.

    Google Scholar 

  31. Staudt R. Gasadsorption, Ingenieurwissenschaftliche Grundlagen, Messmethoden zur Bestimmung und Modelle zur Beschreibung von Adsorptionsgleichgewichten reiner Gase und Gasgemische an porösen Stoffen, Habilitationsschrift, IFT, University of Siegen, Siegen, 2000.

    Google Scholar 

  32. Keller J. U. Equations of State of Adsorbates with Fractal Dimension, Physica A 166 (1990), p. 180–192.

    Article  Google Scholar 

  33. Stencl J. Moisture Sorption Isotherms of Whey Powder Spray in the Temperature Range 10 °C–40 °C, Adsorption Science and Technology, Paper Number 128 r, (2002).

    Google Scholar 

  34. Toth J., Editor Adsorption, Theory, Modeling, and Analysis, Surfactant Science Series Vol. 107, M. Dekker, New York etc., 2002.

    Google Scholar 

  35. Freundlich H., Boedecker A., Ostwald W. Zeitschrift Physikalische Chemie, Leipzig, 57 (1906), p. 385.

    CAS  Google Scholar 

  36. Mandelbrot B. The Fractal Geometry of Nature, Freeman, New York, 1983.

    Google Scholar 

  37. Bunde A., Havlin Sh. (Eds.) Fractals and Disordered Systems, Springer, Berlin etc., 1991.

    Google Scholar 

  38. Farin D., Avnir D. The fractal nature of molecule-surface activities and physical interactions in porous materials, article in: Characterization of Porous Solids, p. 421, K. K. Unger et al., Eds., Elsevier, Amsterdam, 1988.

    Google Scholar 

  39. Bottani E., Steele W. A. A New Approach to the Theory for Adsorption Isotherms on Heterogeneous Surfaces, Adsorption, 5 (1999), p. 81–89.

    Article  CAS  Google Scholar 

  40. Toth J. State equations of the solid-gas interface Layers, Acta Chim. Acad. Sci. Hung., 69 (1971), p. 311.

    CAS  Google Scholar 

  41. Bathen D., Breitbach M. Adsorptionstechnik, VDI-Buch, Springer, Berlin, New York etc., 2001.

    Google Scholar 

  42. Wang X., Zimmermann W., Ng K. Ch., Chakraboty A., Keller J. U. Investigation of the isotherm of silica gel + water systems by using TG and volumetric/manometric methods, J. of Thermal Analysis and Calorimetry, in print, 2004.

    Google Scholar 

  43. Brunauer S., Emmet P. H., Teller E. J. American Chemical Society, 60 (1938), 309.

    Article  CAS  Google Scholar 

  44. Hill T. L. Thermodynamics for Chemists and Biologists, Addison-Wesley, Reading, MA, USA, 1968.

    Google Scholar 

  45. Webb P. A., Orr C. Analytical Methods in Fine Particle Technology, Micromeritics Inc., Norcross, GA, 1997.

    Google Scholar 

  46. Sing K.S.W. et al. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, IUPAC Recommendations 1984, Pure & Appl. Chem., 57 (1985), 603–619.

    CAS  Google Scholar 

  47. Sing K.S.W. et al. (Eds.) IUPAC Recommendations 1994 for Reporting Physisorption Data, Pure & Appl. Chem., 66 (1994), 1739.

    Google Scholar 

  48. Cheng L. S., Yang R. T. Predicting Isotherms in Micropores for Different Molecules and Temperatures from a Known Isotherm by Improved Horvath-Kawazoe Equations, Adsorption 1 (1995), p. 187–196.

    Article  CAS  Google Scholar 

  49. Jaroniec M. Fifty Years of the Theory of the Volume Filling of Micropores, Adsorption, 3 (1997), p. 187.

    Article  CAS  Google Scholar 

  50. Stoeckli F., Lavanchy A. Hugi-Cleari D. Dubinin’s Theory, A Versatile Tool in Adsorption Science, Fundamentals of Adsorption 6, p. 75–80, F. Meunier, E., Elsevier, Paris, 1998.

    Google Scholar 

  51. Hutson N. D., Yang R. T. Theoretical Basis for the Dubinin-Radushkevich (D-R) Adsorption Isotherm Equation, Adsorption 3 (1997), p. 189–195.

    Article  CAS  Google Scholar 

  52. Kaneko K., Murata K. An Analytical Method of Micropore Filling of a Supercritical Gas, Adsorption, 3 (1997), p. 197–208.

    Article  CAS  Google Scholar 

  53. Kruk M., Jaroniec M., Choma J. Critical Discussion of Simple Adsorption Methods Used to Evaluate the Micropore Size Distribution, Adsorption, 3 (1997), p. 209–219.

    Article  CAS  Google Scholar 

  54. Stoeckli F., Couderc G., Sobota R., Lavanchy A. The Myers-Prausnitz-Dubinin Theory and Non-ideal Adsorption in Microporous Solids, Adsorption Science & Technology, 20 (2002), p. 189–198.

    Article  CAS  Google Scholar 

  55. Dabrowski A., Robens E., Klobes P., Meyer K., Podkoscielny P. Standardization of Methods for Characterizing the Surface Geometry of Solids, Particle & Particle Systems Characterization, 20 (2003) 5, p. 311–322.

    Article  CAS  Google Scholar 

  56. Nieszporek K. On the correct use of the Dubinin-Astakhov equation to study the mixed-gas adsorption equilibria, Adsorption, 8 (2002), p. 45–57.

    Article  CAS  Google Scholar 

  57. Keller J. U. Thermodynamik der irreversiblen Prozesse mit Aufgaben, Rechenweg und Lösungen, Teil I: Thermodynamik und Grundbegriffe, Kap. A 14, W. de Gruyter, Berlin — New York, 1977.

    Google Scholar 

  58. Kestin J. A Course in Thermodynamics, Vols. I, II, Blaisdell Publ. Comp., London, 1968.

    Google Scholar 

  59. Marczewski A. W. A Practical Guide to Isotherms of Adsorption on Heterogeneous Surfaces, An Overview, electronic document: http://adsorption.org/awm/ads/Ads.htm, 2004.

    Google Scholar 

  60. Neimark A. V., Ravikovich P. I., Vishnyakov A. Sorption and Phase Transitions in Nanopores, Fundamental of Adsorption 7, Proceedings of FoA Conference 7, Nagasaki, May 2001, p. 319–326, K. Kaneko et al., Edts., Int. Adsorption Society, IK International, Chiba, Japan, 2002.

    Google Scholar 

  61. Horvath G., Kavazoe K. Journal of Chemical Engineering, Japan, 16 (1983), p. 470.

    CAS  Google Scholar 

  62. Cheng L. S., Yang R. T. Predicting Isotherms in Micropores for Different Molecules and Temperatures From a Known Isotherm by Improved Horvath-Kawazoe Equations, Adsorption, 1 (1995), p. 187.

    Article  CAS  Google Scholar 

  63. Basmadjian D. The Little Adsorption Book CRC Press, Boca Raton, 1996.

    Google Scholar 

  64. Madelung E. Die mathematischen Hilfsmittel des Physikers, Springer, Berlin etc., 4th Ed., 1957. Cp. also math programs like MATHCAD, or MATHLAB etc.

    Google Scholar 

  65. Atkins P. W. Physical Chemistry, Oxford University Press, 5th Ed., Oxford UK, 1994.

    Google Scholar 

  66. Myers A. L. Equation of State for Adsorption of Gases and Their Mixtures in Porous Materials, Adsorption, 9 (2003), p. 9–16.

    Article  CAS  Google Scholar 

  67. Zhou L., Bai S. Zhou Y., Yang B. Adsorption of nitrogen on silica gel over a large range of temperatures, Adsorption, 8 (2002), p. 79–87.

    Article  CAS  Google Scholar 

  68. Carsky M., Do D. D. Neural network modelling of adsorption of binary vapour mixtures, Adsorption, 5 (1999), p. 183–192.

    Article  CAS  Google Scholar 

  69. Gibbs J. W. On the Equilibrium of Heterogeneous Substances, American Journal of Sciences and Arts, 16 (1878), p. 441–458.

    Google Scholar 

  70. Young D. M., Crowell A. D. Physical Adsorption of Gases, London, Butterworth, 1962.

    Google Scholar 

  71. Myers A. L., Prausnitz J. M. Thermodynamics of Mixed Gas Adsorption AIChE Journal, 11 (1965), p. 121–127.

    Article  CAS  Google Scholar 

  72. van Ness H. C. Adsorption of Gases on Solids, Industrial & Engineering Chemistry Fundamentals, 8 (1969), p. 464–473.

    Article  Google Scholar 

  73. Sircar S. Excess Properties and Thermodynamics of Multicomponent Gas Adsorption, J. Chem. Soc., Faraday Trans. 81 (1985), p. 1527–1540.

    Article  CAS  Google Scholar 

  74. Talu O., Myers A. L. Rigorous Thermodynamic Treatment of Gas Adsorption, AIChE Journal, 34 (1988), p. 1887–1893.

    Article  CAS  Google Scholar 

  75. Gibbs J. W. The Collected Work of J. Willard Gibbs, Vol. 1, Thermodynamics, Yale University Press, New Haven, 1948.

    Google Scholar 

  76. Markham E. C., Benton A. F. The Adsorption of Gas Mixtures by Silica, J. Am. Chem. Soc., 53 (1931), p. 497–507.

    Article  CAS  Google Scholar 

  77. Keller J. U. Thermodynamics of Non-Isothermal Coadsorption Processes, Ber. Bunsenges. Phys, Chem., 91 (1987), p. 528–536.

    CAS  Google Scholar 

  78. Keller J. U. Interrelations Between Thermodynamic Equations of State of Single-and Multi-Component Adsorbates, Ber. Bunsenges. Phys. Chem. 92 (1988), p. 1510–1516.

    CAS  Google Scholar 

  79. Schottky W., Ulrich H., Wagner C. Thermodynamik (in German), Reprint of the 1929 Edition, Springer, Berlin (West), 1973.

    Google Scholar 

  80. Keller J. U., Zimmermann W., Schein E. Determination of Absolute Gas Adsorption Isotherms by Combined Calorimetric and Dielectric Measurements, Adsorption, 9 (2003) p. 177–188.

    Article  CAS  Google Scholar 

  81. Herbst A. Exzessadsorption reiner Gase im Druckbereich bis 50 MPa, PH-D Thesis, University of Leipzig, 2003, Fortschrittberichte VDI, Reihe 3, Verfahrenstechnik, in preparation, VDI-Verlag Düsseldorf, 2003.

    Google Scholar 

  82. Sengers J. V., Kayser R. F., Peters C. J., White Jr. H. F., Eds. Equations of State for Fluids and Fluid Mixtures, Part I IUPAC Series in Experimental Thermodynamics, Vol. V, Elsevier, New York etc., 2000.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2005). Adsorption Isotherms. In: Gas Adsorption Equilibria. Springer, Boston, MA. https://doi.org/10.1007/0-387-23598-1_8

Download citation

Publish with us

Policies and ethics