Analysis of non-linear pseudo-noise sequences

  • Marek Jackiewicz
  • Eugeniusz Kuriata
Conference paper


In this paper method of generating keys for a stream-cipher on the base of non-linear pseudo-noise sequences is presented. The most important task, ensuring suitable security of the cryptographic system, is an appropriate key selection. There exist many key generation systems but they usually posses properties, which do not allow to design a safe system. In the paper, a method of performance analysis of sequences for cryptographic application is shown. To verification of this methods of keys generation is applied by statistical tests DIEHARD and linearity test, proposed by NIST.

Key words

Latin squares quasigroups cryptography pseudo-noise sequences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dénes J., Keedwell A. D. 1974. ‘Latin Squares and Their Applications’. Akadémiai Kiadó, Budapest.zbMATHGoogle Scholar
  2. [2]
    Gutmann P. 1998. ‘Software Generation of Practically Strong Random Numbers’. Proceedings of the 7 th USENIX Security Symposium.Google Scholar
  3. [3]
    Jackiewicz M., Kuriata E., Hebisz T. 2003. ‘Safety of Key Generators’. Proceedings off 1 st International Conference on Computer Information Systems and Industrial Management Application CISIM’03., ElkGoogle Scholar
  4. [4]
    Jacobson M. T., Matthews P. 1996. ‘Generating Uniformly Distributed Random Latin Squares’. Jornal of Combinatorial Designs, 4(6): pp. 405–137zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Kościelny Cz. 1996. ‘A Method of Constructing Quasigroup-Based Stream-Ciphers’. Applied Mathematics and Computer Science, vol. 6: pp. 109–121.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Kościelny Cz. 1997. ‘NLPN sequences over GF(q)’. Applied Mathematics and Computer Science, Quasigroup and Related Systems, vol. 4: pp. 89–102.zbMATHGoogle Scholar
  7. [7]
    Kuriata E. 2001. ‘Teoria informacji i kodowania’. Oficyna Wydawnicza Politechniki Zielonogórskiej Google Scholar
  8. [8]
    Kutyłowski M., Strothmann W. B. 1998. ‘Kryptografia. Teoria i praktyka zabezpieczania systemów komputerowych’. Oficyna Wydawnicza Read ME, Warszawa.Google Scholar
  9. [9]
    Lidl R., Niederreiter H. 1986. ‘Introduction to finite fields and their applications’. Cambridhe University Press Google Scholar
  10. [10]
    McKay B. D., Rogoyski E. 1995. ‘Latin Squares of Order 10’. The Electronic Journal of Combinatorics, vol. 2, no. 3: pp. 1–4MathSciNetGoogle Scholar
  11. [11]
    MacWilliams F. J., Sloane N. J. A. 1976. ‘Pseudo-Random Sequences and Arrays’. Proceedings of the IEEE, vol. 64(12): pp. 1715–1729MathSciNetCrossRefGoogle Scholar
  12. [12]
    Marsagha G. Statistical tests DIEHARD. Scholar
  13. [13]
    Menezes A. J., van Oorschot P. C., Vanstone S.~A. 1996. ‘Handbook of Applied Cryptography’. CRCPress Google Scholar
  14. [14]
    Ritter T. Cryptography home page, http: //www. ciphersbyritter.comGoogle Scholar
  15. [15]
    Robling Denning D. E. 1983. ‘Cryptography and Data Security’. Addison-Wesley Publishing Company, Inc Google Scholar
  16. [16]
    Rukhin A. et al. 2001. ‘A Statistical Test Suite for Random and Pseudorandom Number Generators for Crypographic Applications‘. National Institute of Standards and Technology Special Publication 800–22 (with revisions dated May 15, 2001) Google Scholar
  17. [17]
    Schneier B. 1994. ‘Applied Cryptography. Protocols, Algorithms, and Source Code in C’. John Wiley & Sons Google Scholar
  18. [18]
    Shannon C. E. 1949. ‘Communication Theory of Secret Systems’. Bell System Technical Journal, 28(4): pp. 656–715.MathSciNetGoogle Scholar
  19. [19]
    Stokłosa J., Bilski T., Pankowski T. 2001. ‘Bezpieczeństwo danych w systemach informatycznych’. Wydawnictwo Naukowe PWN, Warszawa.Google Scholar
  20. [20]
    Wieczorkowski R., Ziehński R. 1997. ‘Komputerowe generatory liczb losowych’. Wydawnictwa Naukowo-Techniczne, Warszawa.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Marek Jackiewicz
    • 1
  • Eugeniusz Kuriata
    • 1
  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations