Advertisement

Choosing representative data items: Kohonen, Neural Gas or Mixture Model?

A case study of erosion data
  • Anna Bartkowiak
  • Joanna Zdziarek
  • Niki Evelpidou
  • Andreas Vassilopoulos

Abstract

When analyzing the erosion risk of Kefallinia, Greece, we have faced the problem, how to choose representatives (prototypes) for a big data set. We consider 3 methods serving this purpose: 1 - Kohonen’s self-organizing map (SOM), 2 - Neural gas (NG), and 3. Mixture model (MM) of Gaussian distributions. The representativeness of the derived prototype vectors is measured by the quantization error, as defined by Kohonen (1995). It appears that neural gas and mixture models surpass quite steadily the SOM method in providing better representatives. To obtain a more thorough insight into the results, we map the obtained prototype vectors onto planes obtained by the neuroscale mapping, which seems to be a convenient alternative to Sammon’s mapping. The SOM codebook vectors are visualized in the same planes and linked by threads. This is shown for the Kefallinia erosion data from Greece.

Keywords

Self-organizing maps Neural gas Mixture models Neuroscale mapping Thread plotting Kefallinia Island 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bartkowiak A., Vassilopoulos A., Evelpidou N. 2003. ‘Choosing data vectors representing a huge data set: Kohonen’s SOM applied to the Kefallinia erosion data’. Proceedings of the First Int. Conf. on Environmental Research and Assessment, Bucharest, Romania, March 23–27, 2003, pp. 505–522, ISBN 973-558-077-2, print on CD-ROM, © Ars Docendi Publishing House, Bucharest, Romania.Google Scholar
  2. [2]
    Bartkowiak A, Szustalewicz A., Evelpidou N, Vassilopoulos A. 2003. ‘Choosing data vectors representing a huge data set: a comparison of Kohonen’s maps and the neural gas method’. Proceedings of the First Int. Conf. on Environmental Research and Assessment, Bucharest, Romania, March 23–27, 2003, pp. 561–572, ISBN 973-558-077-2, print on CD-ROM, © Ars Docendi Publishing House, Bucharest, Romania.Google Scholar
  3. [3]
    de Rider D., Duin R. P. W. 1997. ‘Sammon’s mapping using neural networks: A comparison’. Pattern Recognition Letters 18, pp. 1307–1317.CrossRefGoogle Scholar
  4. [4]
    Gournellos T., Evelpidou N., Vassilopolous A. 2003. ‘Developing an erosion risk map using soft computing’. Natural Hazards, Kluwer, to appear.Google Scholar
  5. [5]
    Kohonen T. 1995. Self-Organizing Maps. Series in Information Science. Vol. 30. Heidelberg, Springer. Second Edition. 1997.Google Scholar
  6. [6]
    Lowe D., Tipping M. 1996. ‘Feed-forward neural networks and topographic mappings for exploratory data analysis’. Neural Computing and Applications 4, pp. 83–95.CrossRefGoogle Scholar
  7. [7]
    Martinetz M., Berkovich S., Schulten K. 1993. ‘Neuralgas’ network for vector quantization and its application to time series prediction. IEEE Trans. Neural Networks V. 4, pp. 558–569.CrossRefGoogle Scholar
  8. [8]
    Martinez T. M., Schulten KJ. 1994. ‘Topology representing networks’. Neural Networks 7, pp. 507–522.CrossRefGoogle Scholar
  9. [9]
    Matlab: The Language of Technical Computing. 2002. Version 6p5. The Mathworks Inc., Natick MA USA.Google Scholar
  10. [10]
    McLachlan G., Peel D. 2000. Finite Mixture Models. Wiley, New York, Chichester.Google Scholar
  11. [11]
    Nabney I. T. 2001. Netlab: Algorithms for Pattern Recognition. Springer London, Berlin, Heidelberg. Springer Series: Advances in Pattern Recognition.Google Scholar
  12. [12]
    Osowski S. 1996. Sieci neuronowe w ujęciu algorytmicznym. WNT Warszawa.Google Scholar
  13. [13]
    Sammon J. W. (Jr.). 1969. ‘A nonlinear mapping for data structure analysis’. IEEE Trans, on Computers C-18(5), pp. 401–409.Google Scholar
  14. [14]
    Tipping M. E., Lowe D. 1997. ‘Shadow targets: A novel algorithm for topographic projections by radial basis functions’. In: Proceedings of the Int. Conf. on Artificial Neural Networks 440, pp. 7–12, IEE.Google Scholar
  15. [15]
    Vassilopoulos A. 2002. ‘Coastal geomorphological classifications in GIS environment of Kefallinia Island’. Proc. 6th Pan-Hellenic Geographical Congress of the Hellenic Geographical Society, Thessaloniki 3–5.10.2002, Vol. 1., pp. 388–394.Google Scholar
  16. [16]
    Vesanto J., Himberg J., Alhoniemi E., Parhankangas J. 2000. SOM Toolbox for Matlab 5. Som Toolbox Team. Helsinki University of Technology, Finland, Libella Oy Espoo. See also: http://www.cis.hut.fi/projects/somtoolbox/.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Anna Bartkowiak
    • 1
  • Joanna Zdziarek
    • 1
  • Niki Evelpidou
    • 2
  • Andreas Vassilopoulos
    • 2
  1. 1.Institute of Computer ScienceUniversity of WroclawWroclawPoland
  2. 2.Remote Sensing Laboratory, Geology Dept.University of AthensAthensGreece

Personalised recommendations