The PCA Reconstruction Based Approach for Extending Facial Image Databases for Face Recognition Systems

  • Liming Chen
  • Georgy Kukharev
  • Tomasz Ponikowski
Conference paper


The one of most problematic subject in face recognition system is to make them immune from variance of pose under which face image is taken. The solution this could be generation of additional images for face recognition system database. a In this paper PCA based approach is presented. It allows to generate subimages to supplement images taken from camera.

Key words

PCA feature eigenface eigenvalue feature space reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Koukharev, A. Kuźmiński: Biometric techniques part 1 — methods for face recognition, (currently in polish only) — Faculty of Computer Science & Information Systems, Technical University of Szczecin, Szczecin, Poland, 2003Google Scholar
  2. [2]
    G. Koukharev, A. Tujaka: Pattern Recognition Methods for Visitor Identification and Access Control — Proceedings of Sixth International Conference Pattern Recognition and Information Processing (PRIP’ 2001), May 2001, Minsk, Republic of Belarus, pp. 19–34Google Scholar
  3. [3]
    G. Koukharev, P. Forczmański, P. Kraszewski, T. Brylka, T. Ponikowski: Realtime face recognition system for personal identification; Proceedings of Advanced Computer Systems’ 99, Faculty of Computer Science & Information Systems, Technical University of Szczecin, Szsczecin, Poland, November 1999Google Scholar
  4. [4]
    W. Zhao, A. Krishnaswamy, R. Chellappa, D. L. Swets, J. Weng: Discriminant analysis of principal components for face recognition; Proceedings of the NATO Advanced Study Institute to Applications, Stirling, Scotland, UK, 1997Google Scholar
  5. [5]
    G. L. Marcialis, F. Roli: Fusion of LDA and PCA for face recognition; Roli LNCS 2359, p. 30Google Scholar
  6. [6]
    F. De la Torre, M. J. Black: Robust principal component analysis for computer vision; ICCV 2001: p. 362–369Google Scholar
  7. [7]
    A. Pentland, B. Moghaddam, T. Starrier: View-based and modular eigenspaces for face recognition; IEEE Conf. on Computer Vision & Pattern Recognition, Seattle, WA, July 1994Google Scholar
  8. [8]
    L. Zhao, Y. Yang: On illumination effects in PCA-based vision system; June 23, 1997. (to appear in Pattern Recognition).Google Scholar
  9. [9]
    R. Zhang, P. Tsai, J. Cryer, M. Shah: Shape from shading: A survey; IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 21, Number 08, August, 1999, pp 690–706CrossRefGoogle Scholar
  10. [10]
    Berthold K.P. Horn: Height and gradient from shading, International Journal of Computer Vision, Vol. 5, No. 1, pp. 37–75, August 1990CrossRefGoogle Scholar
  11. [11]
    M. Shah, P. Tsai: A fast linear shape from shading; CVPR92(734–736). IEEE Site VersionGoogle Scholar
  12. [12]
    W. Y. Zhao, R. Chellappa: SFS based view synthesis for robust face recognition; 4th IEEE Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000, pp. 285–292Google Scholar
  13. [13]
    M. Watanebe, S. K. Nayar: Rational filters for passive depth from defocus; International Journal of Computer Vision, Vol. 27, No. 3, p. 203–225, 1998CrossRefGoogle Scholar
  14. [14]
    P. Favaro: Shape from focus/defocus; Washington University 2000Google Scholar
  15. [15]
    A. Mennucci, S. Soatto: On observing shapes from defocused images; Proc. of the IEEE. Conf. on Image Analysis and Processing, 1999Google Scholar
  16. [16]
    S. Baker, R. Szeliski, P. Anandan: A layered approach to stereo reconstruction; Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, June 1998.Google Scholar
  17. [17]
    D. Scharstein, R. Szeliski: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms; IJCV, 2002Google Scholar
  18. [18]
    D. Scharstein: Stereo vision for view synthesis; IEEE CVPR’96, pp.852–858Google Scholar
  19. [19]
    G. Wolberg: Image morphing — a survey; The Visual Computer (1998) 14:360–372, Springer-Verlag 1998CrossRefGoogle Scholar
  20. [20]
    J. Gomes, T. Beier, B. Costa, L. Darsa, L. Velho: Warping and morphing of graphical objects; Course notes — SIGGRAPH 1997Google Scholar
  21. [21]
    Stephen J. McKenna, Shaogang Gong: Realtime face pose estimation; Department of Applied Computing, University of Dundee, Dundee DD1 4HN, Scotland; Department of Computer Science, Queen Mary and westfield College, London, EnglandGoogle Scholar
  22. [22]
    S.J. McKenna: View-based estimation of head pose; Tech. Rep. IA377656, BR, Advanced perception, BT Labs., Martlesham Heath, England, 1996Google Scholar
  23. [23]
    M. Turk. A. Pentland: Eigenfaces for recognition; J. of cognitive neuroscience, Vol. 3, No. 1, 1991 Google Scholar
  24. [24]
    D.J. Beymer: Face recognition under varying pose; AIMemo 1491, MIT, Cambridge Massachussettes, 1993Google Scholar
  25. [25]
    Rein-Lein Hsu, Anil K. Jain: Face modeling for recognition; Dept. of Computer Science and Engineering, Michigan State University, MI 48824Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Liming Chen
    • 1
  • Georgy Kukharev
    • 2
  • Tomasz Ponikowski
    • 2
  1. 1.Departement MIEcole Centrale de Lyon, laboratoire ICTTEcully CedexFrance
  2. 2.Computer Science and Information Systems DepartmentTechnical University of SzczecinSzczecin

Personalised recommendations