Advertisement

The capacity of ciphers fulfilling the accessibility of cryptograms

  • Tomasz Hebisz
  • Eugeniusz Kuriata
Conference paper

Abstract

The attempt of using the techniques of error correction coding for building the cryptographic system, which can detect the manipulations on cryptograms, is shown in the paper. Presented approach to generating cipher, generating redunant ciphertexts, which are resistant to manipulations, allows to fulfilling the accessibility as well as confidentiality and authenticity. The capacity of obtained ciphertexts, by mean of statistical tests’ results, is also presented.

Key words

cryptography error correction security accessibility of information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Hebisz, Cz. Kościelny. A method of constructing symmetric-key block cryptosystem resistant to manipulations on ciphertext. Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 50, No. 4, 2002.Google Scholar
  2. [2]
    T. Hebisz, E. Kuriata, M. Jackiewicz. Fulfilment of computer security and safety by using symmetric-key block cryptosystem resistant to manipulations on ciphertext. International Conference on Computer Information Systems and Industrial Management Applications CISIM’ 03, 2003.Google Scholar
  3. [3]
    A. Kiayias, M. Yung Polynomial Reconstruction Based Cryptography. SAC 2001. ICALP 2002. LNCS 2259. pp. 129–133. Springer-Verlag. 2002.Google Scholar
  4. [4]
    A. Kiayias, M. Yung Cryptographic Hardness Based on the Decoding of Reed-Solomon Codes. Springer-Verlag. ICALP 2002. LNCS 2380. pp. 232–243. 2002.Google Scholar
  5. [5]
    L. Knudsen, B. Preneel Construction of Secure and Fast Hash Function Using Nonbinary Error-Correcting Codes. IEEE Trans. on Information Theory. Vol. 48. No. 9. pp. 2524–2537. 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Cz. Kościelny. Computing in the composite GF(q m ) of characteristic 2 formed by means of an irreducible binomial, International Journal of Applied Mathematics and Computer Science, Vol. 8, No. 3, pp. 671–680, 1998.Google Scholar
  7. [7]
    Cz. Kościelny, T. Hebisz. More secure computing infinite fields for cryptographic applications. Mathematical Theory of Networks and Systems MTNS 2000, The fourteenth International Conference, Perpignan, 2000, CD-ROM.Google Scholar
  8. [8]
    E. Krouk. A new Public Key Cryptosystem. Proc. of Sixth Joint Swedish-Ruppian Intern. Workshop on Information Theory, 1993.Google Scholar
  9. [9]
    E. Kuriata. Error correction codes in crytography. VI Intern. conference “Wojskowa Konferencja Telekomunikacji i Informatyki”, 1997 (in polish).Google Scholar
  10. [10]
    Y. X. Li, R H. Deng, X. M. Wang. On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Trans. on Information Theory. Vol. 40. pp. 271–273. 1994zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Lidl, H. Niederreiter. Introduction to finite fields and their applications. Cambridhe University Prepp, 1986.Google Scholar
  12. [12]
    G. Marsaglia. Statistical tests Diehard, http://stat.fsu.edu/~geo/diehard.html.Google Scholar
  13. [13]
    R. J. McEliece. A Public Key Cryptosystem Based on Algebraic Coding Theory. JPLDSN Progrepp Rept, pp. 42–44, 1978.Google Scholar
  14. [14]
    A. J. Menezes, ed. Application of Finite Fields. Kluwer Academic Publishers, 1993.Google Scholar
  15. [15]
    H. Niederreiter. Knapsak-type cryptosystems and algebraic coding theory, Probl. Control and Inform. Theory, Vol. 15, 1986.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Tomasz Hebisz
    • 1
  • Eugeniusz Kuriata
    • 1
  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations