Secure Data Transmission via Modulation of the Chaotic Sequence Parameters

  • S. Berczyński
  • 2)YY. A. Kravtsov
  • J. Pejas
  • E. D. Surovyatkina


The method for secure information transmission via chaotic sequences with modulated parameters is studied. Information decoding in this method implies solution of the inverse problem of chaotic dynamics, as suggested by Anishchenko et al (1998, 1999). Algorithms for reconstruction of information parameters in single-channel and multiple-channel schemes of data transmission are discussed and requirements for map, generating chaotic sequence are formulated. The method under consideration impedes unauthorized access to the information transmitted and may serve as flexible instrument for multipurpose cryptographic applications.

Key words

chaotic signals and sequence secure data transmission chaotic cryptosystems cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kocarev L., Halle K.S., Eikert K. et al. Int. J. Bifurcation Chaos, 1992, 2(3), 703.Google Scholar
  2. [2]
    Cuomo K.M., Oppenheim A.V. Phys. Rev. Lett., 1993, 71(1), 65.CrossRefGoogle Scholar
  3. [3]
    Didien H, Kennedy M.P., Hasler M. Analog-digital signal processing. IEEE Trans. Circuits Syst., 1993, 40(10), 634.CrossRefGoogle Scholar
  4. [4]
    Anosov O.L., Butkovskii O.Ya., Kravtsov Yu.A. Dynamic equation reconstruction from the observed 1D time series. In: Dynamical Systems and Chaos (Y. Aizawa, S. Saito, K. Shiraiwa, Eds.). World Scientific: Singapore, 1994, Vol. 2, pp.378–380.Google Scholar
  5. [5]
    Anosov O.L., Butkovskii O.Ya. A discriminant procedure for the solution of inverse problems for non-stationary systems. In: Predictability of Complex Dynamical Systems (Yu.A. Kravtsov, J.B. Kadtke, Eds.). Springer Verlag: Berlin, Heidelberg, 1996, pp.67–78.Google Scholar
  6. [6]
    Kolumban G., Vizvari B., Schwarz P., Abel A. Differential chaos shift keying: a robust coding for chaos communication. Proc. Int. Workshop NDES’96, Seville, Spain, 1996, pp. 87–92.Google Scholar
  7. [7]
    Hasler M. Synchronization of chaotic systems and transmission of information. Int. J. Bifurcation Chaos, 1998, 8(4), 213.Google Scholar
  8. [8]
    Kuleshov V.N., Udalov N.N. Nonlinear filtering of modulated chaotic oscillations. Proc. Int. Workshop NDES’97, Moscow, Russia, pp. 537–542.Google Scholar
  9. [9]
    Kolumban G., Kennedy M.P., Kis G. Multilevel Differential Chaos Shift Keying. Proc. Int. Workshop NDES’97, Moscow, Russia, 1997, pp. 191–196.Google Scholar
  10. [10]
    Kapranov M.V., Morozov A.G. Application of chaotic modulation for hidden data transmission. Proc. Int. Workshop NDES’97, Moscow, Russia, pp. 223–228.Google Scholar
  11. [11]
    V.N. Kuleshov, M.V. Larionova, N.N. Udalov. Information transmission system with chaotic carrier: demands to the accuracy of symbols generation. Proc. 1998 Int. Symp. “On Acoustoelectronics, Frequency Control and Signal Generation”, St.-Petersburg, Russia, 1998, pp. 192–199.Google Scholar
  12. [12]
    Dmitriev A.S., Starkov S.O. Uspehi sovremennoi radioelektroniki (Advances in Modern Radio Electronics, Moscow), 1998, no. 11, p. 4.Google Scholar
  13. [13]
    Tratas Yu.G. Application of statistical communication theory to the problems of chaotic signal transmission. Uspehi sovremennoi radioelektroniki (Advances in Modern Radio Electronics, Moscow), 1998, no. 11, pp. 57–80.Google Scholar
  14. [14]
    Kennedy M. P. Three steps to chaotic communications: coherent, non-coherent, and differentially coherent approaches. Proc. Int. Symp. NOLTA’98, Crans-Montana, Switzerland, 1998, pp. 63–68.Google Scholar
  15. [15]
    Anishchenko V.S., Pavlov A.N. Global reconstruction in application to multichannel communication. Phys. Rev. E, 1998, 57(2), 2455.CrossRefGoogle Scholar
  16. [16]
    Anishchenko V.S., Vadivasova T.E., Astakhov V.V. Nonlinear Dynamics of Chaotic and Stochastic Systems (in Russian). Saratov: Saratov Univ., 1999, 368 pp.Google Scholar
  17. [17]
    Kapranov M.V., Kuleshov V.N., Larionova M.V., Morozov A.G., Udalov H.H. Properties of information transmission systems on the basis of parameters and initial data manipulation in generators of chaotic oscillations. Uspehi sovremennoi radioelektroniki (Advances in Modern Radio Electronics, Moscow), 2000, no. 11, pp.48–62.Google Scholar
  18. [18]
    Bilchinskaya S.G., Butkovskii O.Ya., Kapranov M.V., Kravtsov Yu.A., Morozov A.G., Surovyatkina E.D. Signal reconstruction errors in data transmission on the basis of modulation of the parameters of chaotic sequences. J. Comm. Technol. Electron., 2003, 48(3), 284–292.Google Scholar
  19. [19]
    A. Menezes, P. van Oorschot and S. Vanstone Handbook of Applied Cryptography, London, CRC Press 1997.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. Berczyński
    • 1
  • 2)YY. A. Kravtsov
    • 2
  • J. Pejas
    • 1
  • E. D. Surovyatkina
    • 3
  1. 1.Technical University of SzczecinPoland
  2. 2.Maritime University of SzczecinPoland
  3. 3.Space research InstituteRuss.Acad.Sci.MoscowRussia

Personalised recommendations