Skip to main content

Microwave Imaging: A Model-Based Approach

  • Chapter
Alternative Breast Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Overgaard et al., “Randomized trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma.” Lancet, Vol. 345, 1995, pp. 540–543.

    Article  Google Scholar 

  2. J. van der Zee et al., “Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomized, multicentre trial.” Lancet, Vol. 355, 2000, pp. 1119–1125.

    Google Scholar 

  3. M. I. Skolnik, Introduction to Radar Systems (New York: McGraw-Hill, 1980).

    Google Scholar 

  4. S. Webb, The Physics of Medical Imaging (Philadelphia: Hilger, 1988).

    Google Scholar 

  5. Mammography and Beyond: Developing Techniques for the Early Detection of Breast Cancer (Washington, D.C.: Institute of Medicine, National Academy Press, 2000).

    Google Scholar 

  6. E. Schmid, “Is there reliable experimental evidence for a low-dose RBE of about 4 for mammography x-rays relative to 200 kV x-rays?” Radiat. Res., Vol. 158, 2002, pp. 778–781.

    Google Scholar 

  7. C. Gabriel, S. Gabriel and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey.” Phys. Med. Biol., Vol. 41, 1996, pp. 2231–2249.

    Google Scholar 

  8. S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements on the frequency range 10 Hz to 20 GHz.” Phys. Med. Biol., Vol. 41, 1996, pp. 2251–2269.

    Google Scholar 

  9. S. Gabriel, R. W. Lau, and C. Gabriel. “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues.” Phys. Med. Biol., Vol. 41, 1996, pp. 2271–2293.

    Google Scholar 

  10. K. R. Foster and H. P. Schwan, “Dielectric properties of tissues and biological materials: A critical review.” Crit. Rev. Biomed. Eng., Vol. 17, 1989, pp. 25–104.

    Google Scholar 

  11. R. F. Harringon, Field Computation by Moment Methods (Malabar, FL: Krieger, 1982).

    Google Scholar 

  12. K. R. Foster and J. L. Schepps, “Dielectric properties of tumor and normal tissues at radio through microwave frequencies.”J. Micro. Power, Vol. 16, 1981, pp. 107–119.

    Google Scholar 

  13. L. E. Larson and J. H. Jacobi, Medical Applications of Microwave Imaging (New York: IEEE, 1986).

    Google Scholar 

  14. M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography.” IEEE Trans. Microwave Theory Tech., Vol. 32, 1984, pp. 860–874.

    Google Scholar 

  15. N. Joachimowicz, C. Pichot, and J. R. Hugonin, “Inverse scattering: An iterative numerical method for electromagnetic imaging.” IEEE Trans. Antennas Propagat., Vol. 39, 1991, pp. 1742–1752.

    Article  Google Scholar 

  16. P. M. Meaney et al., “Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery.” IEEE Trans. Med. Imag., Vol. 20, 2001, pp. 104–116.

    Google Scholar 

  17. E. J. Bond et al., “Microwave imaging via space-time beamforming for early detection of breast cancer.” IEEE Trans. Ant. Prop., Vol. 51, 2003, pp. 1690–1705.

    Article  MathSciNet  Google Scholar 

  18. S. C. Hagness, A. Taflove, and J. E. Bridges, “Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors.” IEEE Trans. Biomed. Eng., Vol. 45, 1998, pp. 1470–479.

    Article  Google Scholar 

  19. S. C. Hagness, A. Taflove, and J. E. Bridges, “Three-dimensional FDTD analysis of pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element.” IEEE Trans. Antennas Propag., Vol. 47, 1999, pp. 783–791.

    Article  Google Scholar 

  20. E. C. Fear and M. A. Stuchly, “Microwave detection of breast cancer.” IEEE Trans. Microw. Theory Tech., Vol. 48, 2000, pp. 1854–1863.

    Google Scholar 

  21. E. C. Fear et al., “Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions.” IEEE Trans. Biomed. Eng., Vol. 49, 2002, pp. 812–822.

    Article  Google Scholar 

  22. E. C. Fear et al., “Enhancing breast tumor detection with near-field imaging.” IEEE Microwave Magazine, Vol. 3, 2002, pp. 48–56.

    Article  Google Scholar 

  23. K. L. Carr et al., “Radiometric sensing: an adjuvant to mammography to determine breast biopsy.” IEEE International Microwave Symposium, Boston, MA, 2000, pp. 929–932.

    Google Scholar 

  24. S. Mouty et al., “Microwave radiometric imaging for the characterisation of breast tumors.” European Physical Journal: Applied Physics, Vol. 10, 2000, pp. 73–78.

    Google Scholar 

  25. R. A. Kruger et al., “Thermoacoustic computed tomography of the breast at 434 MHz.” IEEE MTT-S International Microwave Symposium Digest, 1999, pp. 591–594.

    Google Scholar 

  26. A. E. Bulyshev et al., “Computational modeling of three-dimensional microwave tomography of breast cancer.” IEEE Trans. Biomed. Eng., Vol. 48, 2001, pp. 1053–1056.

    Article  Google Scholar 

  27. Z. Q. Zhang et al., “Microwave breast imaging: 3-D forward scattering simulation.” IEEE Trans. Biomed. Eng., Vol. 50, 2003, pp. 1180–1189.

    Google Scholar 

  28. P. M. Meaney, K. D. Paulsen, and T. P. Ryan, “Two-dimensional hybrid element image reconstruction for TM illumination.” IEEE Trans. Ant. Prop., Vol. 43, 1995, pp. 239–247.

    Article  Google Scholar 

  29. N. Joachimowicz, C. Pichot, and J. R. Hugonin, “Inverse scattering: An iterative numerical method for electromagnetic imaging.” IEEE Trans. Antennas Prop., Vol. 39, 1991, pp. 1742–1752.

    Google Scholar 

  30. S. Caorsi, G. G. Gragnani, and M. Pastorino, “A multi-view microwave imaging system for two-dimensional penetrable objects.” IEEE Trans. Microwave Theory Tech., Vol. 39,1991, pp. 845–851.

    Google Scholar 

  31. K. D. Paulsen and D. R. Lynch, “Calculation of interior values by the boundary element method.” Commun. Appl. Numerical Methods, Vol. 5, 1989, pp. 7–14.

    Google Scholar 

  32. D. H. Schaubert and P. M. Meaney, “Efficient calculation of scattering by inhomogeneous dielectric bodies.” IEEE Trans. Antennas Prop., Vol. 34, 1986.

    Google Scholar 

  33. P. M. Meaney, K. D. Paulsen, and J. T. Chang, “Near-field microwave imaging of biologically based materials using a monopole transceiver system.” IEEE Trans. Microwave Theory Tech., Vol. 46, 1998, pp. 31–45.

    Google Scholar 

  34. K. D. Paulsen and P. M. Meaney, “Compensation for nonactive array element effects in a microwave imaging system: Part I—forward solution vs. measured data comparison.” IEEE Trans. Med. Imag., Vol. 18, 1999, pp. 508–518.

    Google Scholar 

  35. P. M. Meaney et al., “Compensation for nonactive array element effects in a microwave imaging system: Part II—imaging results.” IEEE Trans. Med. Imag., Vol. 18, 1999, pp. 508–518.

    Google Scholar 

  36. D. Li, P. M. Meaney, and K. D. Paulsen, “Conformal microwave imaging for breast cancer detection.” IEEE Trans. Microwave Theory Tech., Vol. 51, 2003, 1779–1186.

    Google Scholar 

  37. K. D. Paulsen et al., “A dual mesh scheme for finite element based reconstruction algorithms.” IEEE Trans. Med. Imag., Vol. 14, 1995, pp. 504–514.

    Google Scholar 

  38. P. M. Meaney et al., “A two-stage microwave image reconstruction procedure for inverse internal feature extraction.” Med. Phys., Vol. 28, 2001, pp. 2358–2369.

    Article  Google Scholar 

  39. G. Demoment, “Image reconstruction and restoration: Overview of common estimation structures and problems.” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, 1989, pp. 2024–2036.

    Article  Google Scholar 

  40. G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed. (Baltimore, MD: Johns Hopkins Univ. Press, 1989).

    Google Scholar 

  41. B. Kaltenbacher, “Newton-type methods for ill-posed problems.” Inverse Probl., Vol. 13, 1997, pp. 729–753.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Demidenko, “Asymptotic properties of nonlinear mixed effects models,” in Modeling Longitudinal and Spatially Correlated Data (New York: Springer-Verlag, 1997), pp. 47–62.

    Google Scholar 

  43. K. D. Paulsen and W. Liu, “Memory and operations count scaling for coupled finite element and boundary element systems of equations.” Int. J. Numerical Methods in Eng., Vol. 33, 1992, pp. 1289–1304.

    Google Scholar 

  44. K. D. Paulsen, D. R. Lynch, and J. W. Strohbehn, “Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media.” IEEE Trans. Microwave Theory Tech., Vol. MTT-36, 1988, pp. 682–693.

    Google Scholar 

  45. D. R. Lynch. K. D. Paulsen, and J. W. Strohbehn, “Hybrid element method for unbounded electromagnetic problems in hyperthermia.” Int. J. Numer. Methods Eng., Vol. 23,1986, pp. 1915–1937.

    Google Scholar 

  46. K. Yashiro and S. Ohkawa, “Boundary element method for electromagnetic scattering from cylinders.” IEEE Trans. Antennas Prop., Vol. 33, 1985, pp. 383–389.

    Google Scholar 

  47. M. Johnsen, K. D. Paulsen, and F. E. Werner, “Radiation boundary conditions for finite element solutions of generalized wave equations.” Int. J. Numer. Meth. Fluids, Vol. 12, 1991, pp. 765–783.

    Article  MathSciNet  Google Scholar 

  48. P. M. Meaney et al., “An active microwave imaging system for reconstruction of 2-D electrical property distributions.” IEEE Trans. Biomed. Eng., Vol. 42, 1995, pp. 1017–1026.

    Article  Google Scholar 

  49. D. Franza, N. Joachimowicz, and J. C. Boloney, “SICS: A sensor interaction compensation scheme for microwave imaging,” IEEE Trans. Antennas Prop., Vol. 50, 2002, pp. 211–216.

    Google Scholar 

  50. C. A. Balanis, Antenna Theory: Analysis and Design (New York: Harper & Row, 1982), pp. 62–67.

    Google Scholar 

  51. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics (London: Institute of Electrical Engineers, 1995).

    Google Scholar 

  52. G. F. F. Seber and C. J. Wild, Nonlinear Regression (New York: Wiley, 1989).

    Google Scholar 

  53. S. Caorsi, G. L. Gragnani, and M. Pastorino, “Reconstruction of dielectric permittivity distributions in arbitrary 2-D inhomogeneous biological bodies by a multiview microwave numerical method.” IEEE Trans. Med. Imag., Vol. 12, 1993, pp. 232–239.

    Google Scholar 

  54. Q. H. Liu et al., “Active microwave imaging 1-2 D forward and inverse scattering methods.” IEEE Trans. Microwave Theory Tech., Vol. 50, 2002, pp. 123–133.

    Google Scholar 

  55. D. Li, P. M. Meaney, K. D. Paulsen, “Conformal microwave imaging for breast cancer techniques.” IEEE Trans. Microwave Theory Tech., Vol. 51, 2003, pp. 1179–1186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Meaney, P.M., Fang, Q. (2005). Microwave Imaging: A Model-Based Approach. In: Alternative Breast Imaging. The Kluwer International Series in Engineering and Computer Science, vol 778. Springer, Boston, MA. https://doi.org/10.1007/0-387-23364-4_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-23364-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23363-5

  • Online ISBN: 978-0-387-23364-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics