Skip to main content

Fluorescence-based Nitric Oxide Detection

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 9))

Abstract

Nitric oxide (NO) is a neutral free radical gas. The NO molecule has long been recognized as an environmental contaminant and a potential health hazard in the atmosphere. It was not until recently that beneficial roles for NO were discovered in biological systems.13 In the years since the groundbreaking discovery of NO signaling in biology, further work has shown that NO is a ubiquitous messenger in the cardiovascular, immune, and nervous systems.1,412 Even though NO is a relatively stable species with reported half-lives under physiological conditions of up to five seconds,5, 13, 14 it readily reacts with a variety of species commonly found in living organisms. The targets of NO include dioxygen, oxygen radicals, thiols, amines, and transition metal ions. The reactions of NO with dioxygen and superoxide result in formation of reactive nitrogen oxide species (RNOS) NO2 and ONOO, respectively. Both products are more reactive than NO itself In aqueous environments, the reactions of NO with dioxygen can also yield NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Furchgolt, Endothelium-Derived Relaxing Factor: Discoveiy, Early Studies and Identification as Nitric Oxide, Angew. Chem. Int. Ed. 38, 1870–1880 (1999).

    Google Scholar 

  2. L. J. IgnaiTO, G. M. Buga, K. S. Wood, R. E. Byms, and G. Chaudhuri, Endothelium-Derived Relaxing Factor Produced and Released from Arteiy and Vein is Nitric Oxide, Proc. Natl. Acad. Sci. USA 84, 9265–9269(1987).

    ADS  Google Scholar 

  3. R. M. J. Palmer, A. G. Ferrige, and S. Moncada, Nitric Oxide Release Accounts for the Biological Activity of Endothelium-Derived Relaxing Factor, Nature 327, 524–526 (1987).

    PubMed  ADS  CAS  Google Scholar 

  4. D. A. Wink, Y. Vodovot, J. Laval, F. Laval, M. W. Dewhirst, and J. B. Mitchell, The Multifaceted Roles of Nitric Oxide in Cancer, Carcinogenesis 19, 711–721 (1998).

    PubMed  CAS  Google Scholar 

  5. S. Moncada, R. M. J. Palmer, and E. A. Higgs, Nitric Oxide: Physiology, Pathophysiology, and Pharmacology, Pharmacol. Rev. 43, 109–142 (1991).

    PubMed  CAS  Google Scholar 

  6. J. F. KeiTvin,Jr., J. R. Ijtncaster,Jr., and P. L. Feldraan, Nitric Oxide: A New Paradigm for Second Messengers, J. Med. Chem. 38, 4343–4362 (1995).

    Google Scholar 

  7. P. L. Feldman, O. W. Griffith, and D. J. Stuchr, The Suiprising Life of Nitric Oxide, J. Chem. Eng. News 71, 26–38(1993).

    CAS  Google Scholar 

  8. D. S. Bredt and S. H. Snyder, Nitric Oxide: A Physiologic Messenger Molecule, Annu. Rev. Biochem. 63, 175–195 (1994).

    PubMed  CAS  Google Scholar 

  9. F. Murad, Discovery of Some of the Biological Effects of Nitric Oxide and Its Role in Cell Signaling, Angew. Chem. Int. Ed 38, 1856–1868 (1999).

    CAS  Google Scholar 

  10. L. J. Ignano, Nitric Oxide: A Unique Endogenous Signaling Molecule in Vascular Biology, Angew. Chem. Int.Ed. 38, 1882–1892(1999).

    Google Scholar 

  11. A. R. Butler and D. L. H. Williams, The Physiological Role of Nitric Oxide, Chem. Soc. Rev., 233–241 (1993).

    Google Scholar 

  12. H. Rubbo, V. Dariey-Usmar, and B. A. Freeman, Nitric Oxide Regulation of Tissue Free Radical Injuiy, Chem. Res. Toxicol. 9, 809–820 (1996).

    PubMed  CAS  Google Scholar 

  13. J. R. Lancaster,Jr., in: Nitric Oxide Biology and Pathohiology, edited by L. J. Ignano (Academic Press, San Diego, 2000), pp. 209–224.

    Google Scholar 

  14. R. F. Furchgott and P. M. Vanlioutte, Endothelium-Derived Relaxing and Contracting Factors, EASES J. 3, 2007–2018(1989).

    CAS  Google Scholar 

  15. S. Pfeiffer, B. Mayer, and B. Hemmens, Nitric Oxide: Chemical Puzzles Posed by a Biological Messenger, Angew. Chem. Int. Ed. 38, 1714–1731 (1999).

    Google Scholar 

  16. D. S. Bredt, P. M. Hwang, and S. H. Snyder, Localization of Nitric Oxide Synthase Indicating a Neural Role for Nitric Oxide, Nature 347, 768–770 (1990).

    PubMed  ADS  CAS  Google Scholar 

  17. A. M. Ixone, R. M. J. Palmer, R. G. Kjiowles, P. L. Francis, D. S. Ashton, and S. Moncada, Constitutive and Inducible Nitric Oxide Synthases Incoiporate Molecular Oxygen into Both Nitric Oxide and Citrullinc, J. Biol. Chem. 266, 23790–23795 (1991).

    Google Scholar 

  18. F. Laval and D. A. Wink, Inhibition by Nitiic Oxide of the Repair Protein, O-Methylguanine-DNA-Methyltransferase, Carcinogenesis 15, 443–447 (1994).

    PubMed  CAS  Google Scholar 

  19. V. Calabrese, T. E. Bates, and A. M. G. Stella, NO Synthase and NO-Dependent Signal Pathways in Brain Aging and Neurodegenerative Disorders: The Role of Oxidant Antioxidant Balance, Neurochem. Res. 25. 1315–1341 (2000).

    PubMed  CAS  Google Scholar 

  20. E. M. Schuman and D. V. Madison, A Requirement for the Intracellular Messanger Nitiic Oxide in Long-Tenn Potentiation, Science 254, 1503–1506 (1991).

    PubMed  ADS  CAS  Google Scholar 

  21. F. T. Bonner and G. Stedman, in: Methods In Nitric Oxide Research, edited by M. Feelisch and J. S. Stamler (John Wiley & Sons, New York, 1996), pp. 3–18.

    Google Scholar 

  22. J. R. Lancaster,Jr., A Tutorial on the Diffusibility and Reactivity of Free Nitric Oxide, A Tutorial on the Diffusibility and Reactivity of Free Nitric Oxide, Nitric Oxide: Biol, and Chem. I, 18–30(1997).

    Google Scholar 

  23. J. Wood and J. Garthwaite, Models of the DifTusional Spread of Nitric Oxide: Implications for Neural Nitric Oxide Signalling and Its Phannacological Properties, Neuropharm. 33, 1235–1244 (1994).

    CAS  Google Scholar 

  24. E. M. Schuman and D. V. Madison, Nitric Oxide and Synaptic Function, Annu. Rev. Neurosci. 17, 153–183(1994).

    PubMed  CAS  Google Scholar 

  25. G. A. Bohme, C. Bon, M. Lxmaire, M. Reibaud, O. Plot, J.-M. Stutzmann, A. Doble, and J.-C. Blanchard, Altered Synaptic Plasticity and Memory Fonnation in Nitric Oxide Synthase Inhibitor-Treated Rats, Proc. Natl..Acad. Sci. USA 90, 9191–9194 (1993).

    PubMed  ADS  CAS  Google Scholar 

  26. H. H. H. W. Schmidt and M. Kelm, in; Methods in Nitric Oxide Research, edited by M. Feelisch and J. S. Stamler (John Wiley & Sons, New York, 1996), pp. 491–497.

    Google Scholar 

  27. V. Hampl, C. L. Walters, and S. L. Archer, in: Methods in Nitric Oxide Research, edited by M. Feelisch and J. S. Stamler (John Wiley & Sons, New York, 1996), pp. 309–318.

    Google Scholar 

  28. L. Mao, Y. Tian, G. Shi, H. Liu, and L. Jin, A New Ullramicrosensor for Nitric Oxide Based on Electropolymerized Film of Nickel Salen, Anal. Lett. 31, 1991–2007 (1998).

    CAS  Google Scholar 

  29. F. Bedioui and N. Villencuvc, Electrochemical Nitric Oxide Sensors for Biological Samples — Principle, Selected Examples and Applications, Electroanalysis 15, 5–18 (2003).

    CAS  Google Scholar 

  30. A. Ciszewski and G. Milczarek, Electrochemical Detection of Nitric Oxide Using Polymer Modified Electrodes, Talanta 61, 11–26 (2003).

    CAS  PubMed  Google Scholar 

  31. Y. Kotake, T. Tanigawa, M. Tanigawa, I. Ueno, D. R. Allen, and C.-S. Lai, Continuous Monitoring of Cellular Nitric Oxide Generation by Spin Trapping with an Iron-Dithiocarbamate Complex, Biochim. Biophys. Acta 1289, 362–368 (1996).

    PubMed  Google Scholar 

  32. A. M. Komarov and C.-S. Lai, Detection of Nitric Oxide Production in Mice by Spin-Tapping Electron Paramagnetic Resonance Spectroscopy, Biochim. Biophys. Acta 1272, 29–36 (1995).

    PubMed  Google Scholar 

  33. T. Yoshimura, S. Fujii, H. Yokoyama, and H. Kamada, In Vivo Electron Paramagnetic Resonanqe Imaging of NO-Bound Iron Complex in a Rat Head, Chem. Lett. 309–310 (1995).

    Google Scholar 

  34. S. Fujii and T. Yoshimura, A New Trend in Iron-Dithiocarbamate Complexes: As an Endogenous NO Trapping Agent, Coord Chem. Rev. 198, 89–99 (2000).

    CAS  Google Scholar 

  35. T. Nagano and T. Yoshimura, Bioimaging of Nitric Oxide, Chem. Rev. 102, 1235–1269 (2002).

    PubMed  CAS  Google Scholar 

  36. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev. 97, 1515–1566(1997).

    PubMed  Google Scholar 

  37. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer Academic / Plenum Publishers, Boston, 1999).

    Google Scholar 

  38. G. K. Walkup, S. C. Burdette, S. J. Lippard, and R. Y. Tsien, A New Cell-Penneable Fluorescent Probe for Zn2+. J. Am. Chem. Soc. 122, 5644–5645 (2000).

    CAS  Google Scholar 

  39. S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien, and S. J. Lippard, Fluorescent Sensors for Zn2+ Based on a Fluorescein Platfonn; Synthesis, Properties, and Intracellular Distribution, J. Am. Chem. Soc. 123,7831–7841 (2001).

    PubMed  CAS  Google Scholar 

  40. S. C. Burdette, C. J. Frederickson, W. Bu, and S. J. Lippard, ZP4, an Improved Neuronal Zn2+ Sensor of the Zinpyr Family, J. Am. Chem. Soc. 125, 1778–1787 (2003).

    PubMed  CAS  Google Scholar 

  41. C. J. Chang, J. Jaworeki, E. M. Nolan, M. Sheng, and S. J. Lippard, A Tautomeric Zinc Sensor for Ratiometric Fluorescence Imaging: Application to Nitric Oxide-Induced Release of Intracellular Zinc., Proc. Natl. Acad. Sci. USA 101, 1129–1134 (2004).

    PubMed  ADS  CAS  Google Scholar 

  42. J. H. Wiersma, 2,3-Diaminonaphthalene as a Speetrophotometric and Fluorometric Reagent for the Detennination of Nitrite Ion, Anal. Lett. 3, 123–132 (1970).

    CAS  Google Scholar 

  43. P. Damiani and G. Burini, Fluorometric Detennination of Nitrite, Talanta 33, 649–652 (1986).

    CAS  PubMed  Google Scholar 

  44. C. R. Sawicki, Fluorimetric Detennination of Nitrate, Anal. Lett. 4, 761–775 (1971).

    CAS  Google Scholar 

  45. D. Rait, J. S. Wishnok, R. Fitts, and S. R. Tannenbaum, Bacterial Catalysis of Nitrosation: Involvement of the nar Operon Escherichia coli, J. Bacteriology 170, 359–364 (1988).

    Google Scholar 

  46. X.-B. Ji and T. C. Hollochcr, Mechanism for Nitrosation of 2,3-Diaminonaphthalene by Escherichia coli: Enzymatic Production of NO Followed by O2-Dependent Chemical Nitrosation, Appl. Environ. Microbiol. 54, 1791–1794 (1988).

    PubMed  CAS  Google Scholar 

  47. Fl. Kosaka, J. S. Wishnok, M. Miwa, C. D. Leaf and S. R. Tannenbaum, Nitrosation by Stimulated Macrophages. Inhibitiors, Enhancers, and Substrates., Carcinogenesis 10, 563–566 (1989).

    PubMed  CAS  Google Scholar 

  48. T. P. Misko, W. M. Moore, T. P. Kasten, G. A. Nickols, J. A. Corbett, R. G. Tilton, M. L. McDaniel, J. R. Williamson, and M. G. Currie, Selective Inhibition of the Inducible Nitric Oxide Synthase by Aminoguanidine, Eur J. Pharm. 233, 119–125 (1993).

    CAS  Google Scholar 

  49. T. P. Misko, R. J. Schilling, D. Salvemini, W. M. Moore, and M. G. Cunie, A Fluorometric Assay for the Measurement of Nitrite in Biological Samples, Anal. Biochem. 214, 11–16 (1993).

    PubMed  CAS  Google Scholar 

  50. A. M. Miles, Y. Chen, M. W. Owens, and M. B. Grisham, Fluorometric Detennination of Nitric Oxide, Methods 7,40–41 (1995).

    CAS  Google Scholar 

  51. D. J. Kleinhenz, X. Fan, J. Rubin, and C. M. Hart, Detection of Endothelial Nitric Oxide Release with the 2,3-Diaminonaphthalene Assay, Free Rad. Biol. Med. 34, 856–861 (2003).

    PubMed  CAS  Google Scholar 

  52. T. Nagano, H. Takizawa, and M. Hirobe, Reactions of Nitric Oxide with Amines in the Presence of Dioxygen, Tet. Lett. 36, 8239–8242 (1995).

    CAS  Google Scholar 

  53. H. Kojima, K. Sakurai, K. Kikuchi, S. Kawahara, Y. Kinno, H. Nagoshi, Y. Hirata, T. Akaike, H. Maeda, and T. Nagano, Development of a Fluorescent Indicator for the Bioimaging of Nitric Oxide, Biol. Phann. Bull. 20, 1229–1232(1997).

    CAS  Google Scholar 

  54. R. Y. Tsien, A Non-Dismptive Technique for Loading Calcium Buffers and Indicators into Cells, Nature 290, 527–528(1981).

    PubMed  ADS  CAS  Google Scholar 

  55. C. Munkholm, D.-R. Parkinson, and D. R. Walt, Intrainolecular Fluorescence Self-Quenching of Fluoresceinamine, J. Am. Chem. Soc. 112. 2608–2612(1990).

    CAS  Google Scholar 

  56. H. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, and T. Nagano, Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: Diaminofluoresceins, Anal. Chem. 70. 2446–2453 (1998).

    PubMed  CAS  Google Scholar 

  57. H. Kojima, Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata, and T. Nagano, Fluorescent Indicators for Imaging Nitric Oxide Production, Arigew. Chem. Int. Ed. 38, 3209–3212 (1999).

    CAS  Google Scholar 

  58. W.-C. Sun, K. R. Gee, D. H. Klaubert, and R. P. Haugland, Synthesis of Fluorinated Fluoresceins, J. Org. Chem. 62, 6469–6475 (1997).

    CAS  Google Scholar 

  59. H. Kojima, M. Hirotani, N. Nakatsubo, K. Kikuchi, Y. Urano, T. Higuchi, Y. Hirata, and T. Nagano, Bioimaging of Nitric Oxide with Fluorescent Indicators Based on the Rliodainine Chromophore, Anal. Chem. 12, 1967–1973(2001).

    Google Scholar 

  60. H. Kojima, M. Hirotani, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, Fluorescent Indicators for Nitric Oxide Based on Rhodamine Chromophore, Tet. Lett. 41, 69–72 (2000).

    CAS  Google Scholar 

  61. M. J. Plater, I. Greig, M. H. Helfrich, and S. H. Ralston, The Synthesis and Evaluation of o-Phenylenediamine Derivatives as Fluoiescent Probes for Nitric Oxide Detection, J. Chem. Soc. Perkin Trans. I.. 2553–2559(2001).

    Google Scholar 

  62. X. Zhang, H. Wang, J.-S. Li, and H.-S. Zhang, Developinent of a Fluorescent Probe for Nitiic Oxide Detection Based on Difluoroboradiaza-s-indacene Fluorophore, Anal. Chim. Acta 481, 101–108 (2003).

    CAS  Google Scholar 

  63. X. Zhang, H. Wang, S.-C. Liang, and H.-S. Zhang, Spectrofluorimetric Detennination of Nitric Oxide at Trace Levels with 5,6-Diamino-l,3-Naphthalene Disulfonic Acid, Talanta 56, 499–504 (2002).

    CAS  PubMed  Google Scholar 

  64. S. Schuchmann, D. Albrecht, U. Heinemann, and O. v. B. u. Halbach, Nitric Oxide Modulates Low-Mg2+-Induccd Epileptifonn Activity in Rat Hippocampal-Entorhinal Cortex Slices, Nerobiol. of Disease 11, 96–105(2002).

    CAS  Google Scholar 

  65. N. Nakatsubo, H. Kojima, K. Kikuchi, H. Nagoshi, Y. Hirata, D. Maeda, Y. Imai, T. Irimura, and T. Nagano, Direct Evidence of Nitric Oxide Production from Bovine Aoitic Endothelial Cells Using New Fluorescence Indicators: Diamino fluoresceins, FEBS Lett. 427, 263–266 (1998).

    PubMed  CAS  Google Scholar 

  66. J. F. Leikeit, T. R. Räthel, C. Müller, A. M. Vollmar, and V. M. Dirseh, Reliable In Vitro Measureinent of Nitiic Oxide Released From Endothelial Cells Using Low Concentrations of the Fluorescent Probe 4,5-DiaminoHuorescein, FEBS Lett. 506, 131–134(2001).

    Google Scholar 

  67. D. Jourd’Heuil, Increased Nitric Oxide-Dependent Nitrosylation of 4,5-Diaminofluorescein by Oxidants: Implications for the Measurement of Intracellular Nitric Oxide, Free Rad. Biol. Med. 33, 676–684 (2002).

    PubMed  CAS  Google Scholar 

  68. A. Imrich and L. Kobzik, Fluorescence-Based Measureinent of Nitric Oxide Synthase Activity in Activated Rat Macrophages Using Dichlorofluorescin, Nitric Oxide: Biol, and Chem. 1, 359–369 (1997).

    CAS  Google Scholar 

  69. P. G. Gunasekar, A. G. Kanthasamy, J. L. Borowitz, and G. E. Isom, Monitoring Intracellular Nitric Oxide Formation by Dichlorofluorescin in Neuronal Cells, J. Neurosci. Methods 61, 15–21 (1995).

    PubMed  CAS  Google Scholar 

  70. S. J. Hempel, G. R. Buetlner, Y. Q. O’Malley, D. A. Wessels, and D. M. Flaherty, Dihydrofluorescein Diacetate Is Superior for Detecting Intracellular Oxidants: Comparison with 2′,7′-Dichlorodihydrotluoresecin Diacetate, and 5(and 6)-Carboxy-2′,7′-Dichlorodihydrofluorescein Diacetate and Dihydrorhodamine 123, Free Rad. Biol. Med. 27. 146–159 (1999).

    PubMed  CAS  Google Scholar 

  71. K.-i. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano, Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species, J. BioL Chem. 278, 3170–3175 (2003).

    PubMed  CAS  Google Scholar 

  72. O. Myhre, J. M. Andersen, H. Aanies, and F. Fonnum, Evaluation of the Probes 2′,7′-Dichlorofluorescin Diacetate, Luminol, and Lucigenin as Indicators of Reactive Species Fonnation, Biochem. Pharma. 65, 1575–1582(2003).

    CAS  Google Scholar 

  73. T. Rieth and K. Sasamoto, Detection of Nitric Oxide and Nitrite by Using a Rhodamine-Type Fluorescent Indicatior. Anal. Commun. 35, 195–197(1998).

    CAS  Google Scholar 

  74. P. Meineke, U. Rauen, H. de Groot, H.-G. Korth, and R. Sustmann, Cheletropic Traps for the Fluorescence Spectroscopic Detection of Nitric Oxide (Nitrogen Monoxide) in Biological Systems, Chem. Eur. J. 5, 1738–1747(1999).

    CAS  Google Scholar 

  75. M. Bätz, H.-G. Koith and R. Sustniann, A Novel Method for Detecting Nitric Oxide (NO) by Fonnation of Fluorescent Prodcuts Based on Clitletropic Spin Traps, Angew. Chem. Int. Ed. 36, 1501–1503 (1997).

    Google Scholar 

  76. K. Toda, K. Ochi. and I. Saneinasa, NO-Sensing Properties of Au Thin Film, Sens. Actuators. B 32, 15–18 (1996).

    Google Scholar 

  77. S. L. R. Barker and R. Kopeiman, Development and Cellular Applications of Fiber Optic Nitric Oxide Sensors Based on a Gold-Adsorbed Fluorophore, Anal. Chem. 70. 4902–4906 (1998).

    PubMed  CAS  Google Scholar 

  78. S. L. R. Barker, H. A. Clark, S. F. Swallen. R. Kopclman, A. W. Tsang. and J. A. Swanson, Ratiometric and Fluorescence-Lifetimc-Based Biosensors Incoiporating Cytochrome c′ and the Detection of Extra-and Intracellular Macrophage Nitric Oxide, Anal. Chem. 71, 1767–1772 (1999).

    PubMed  CAS  Google Scholar 

  79. S, L. R. Barker, Y. Zhao, M.A. Marietta, and R. Kopelman, Cellular Applications of a Sensitive and Selective Fiber-Oplic Nitric Oxide Biosensor Based on a Dyc-Liibcled Heme Domain of Soluble Guanylatc Cyclase, Anal. Chem. 71, 2071–2075(1999)

    PubMed  CAS  Google Scholar 

  80. S. L. R. Barker, R. Kopelman, T. E. Meyer, and M. A. Cusanovich, Fiber-Optic Nitric Oxide-Selective Biosensors and Nanosensoi, Anal. Chem. 70, 971–976(1998).

    PubMed  CAS  Google Scholar 

  81. Y. Katayama, S. Takahashi, and M. Maeda, Design, Synthesis and Characterization of a Novel Fluorescent Probe for Nitric Oxide (Nitrogen Monoxide), Anal. Chim. Acta 365, 159–167 (1998).

    CAS  Google Scholar 

  82. A. W. Vames, R. B. Dodson, and E. L. Wehry, Interactions of Transition-Metal Ions with Photoexcited States of Flavins. Fluorescence Quenching Studies, J. Am. Chem. Soc. 94, 946–950 (1972).

    Google Scholar 

  83. Y. Katayama, N. Soh, K. Koide, and M. Maeda, A Novel Molecular System for Nitric Oxide Detecdon with High Sensitivity, Chem. Lett., 1152–1153 (2000).

    Google Scholar 

  84. N. Soh, Y. Katayama, and M. Maeda, A Fluorescent Probe for Monitoring Nitric Oxide Production Using a Novel Detection Concept, Analyst 126, 564–566 (2001).

    PubMed  CAS  Google Scholar 

  85. N. Soh, T. Imalo, K. Kawamura, M. Maeda, and Y. Katayama, Ratiometric Direct Detection of Nitric Oxide Based on a Novel Signal-Switching Mechanism, Chem. Commun. 2650–2651 (2002).

    Google Scholar 

  86. Y. Katayama, N. Soh, and M. Maeda, Strategies and Development of Molecular Probes for Nitrogen Monoxide Monitoring, Bull. Chem. Soc. Jpn. 75, 1681–1691 (2002).

    CAS  Google Scholar 

  87. K. J. Franz and S. J. Lippard, NO Disproportionation Reactivity of Fe Tropocoronand Complexes, J. Am. Chem. Soc. 121. 10504–10512 (1999).

    CAS  Google Scholar 

  88. K. J. Franz and S. J. Lippard. Disproportionation of Nitric Oxide Promoted by a Mn Tropocoronand, J. Am. Chem. Soc. 120, 9034–9040 (1998).

    CAS  Google Scholar 

  89. K. J. Franz and S. J. Lippard, Nitrosyl Transfer from Manganese to Iron in Tropocoronand Coinplexes, Inorg. Chem. 39, 3722–3723 (2000).

    PubMed  CAS  Google Scholar 

  90. K. J. Franz, L. H. Doener, B. Spingler. and S. J. Lippard, Pentacoordinate Cobalt(III) Thiolate and Nitrosyl Tropocoronand Compounds, Inorg. Chem. 40, 3774–3780 (2001).

    PubMed  CAS  Google Scholar 

  91. K. J. Franz, N. Singh, B. Spingler, and S. J. Lippard, Aminotroponiminates as Ligands for Potential Metal-Based Nitric Oxide Sensors, Itmrg. Chem. 39, 4081–4092 (2000).

    CAS  Google Scholar 

  92. K. J. Franz, N. Singh, and S. J. Lippard, Metal-Based NO Sensing by Selective Ligand Dissociation, Angew. Chem. Int. Ed. 39, 2120–2122 (2000).

    CAS  Google Scholar 

  93. Z.-H. Liu, C.-Y. Duan, J. Hu, and X.-Z. You, Design, Synthesis, and Ciystal Stmcture of a cis-Configuration NiSi-Coordinated Palladium(ll) Complex: Role of the intra-and hitermolecular Aromatic-Ring Stacking Interaction, Inorg. Chem. 38, 1719–1724 (1999).

    PubMed  CAS  Google Scholar 

  94. L. Fabbrizzi, M. Licchelli, and P. Pallavicini, Transition Metals as Switches, Ace. Chem. Res. 32, 846–853 (1999).

    CAS  Google Scholar 

  95. R. Bergonzi, L. Fabbrizzi, M. Licchelli, and C. Mangano, Molecular Switches of Fluorescence Operating through Metal Centred Redox Couples, Coord. Chem. Rev. 170, 31–46 (1998).

    CAS  Google Scholar 

  96. R. L. Martin and D. Taylor, Bending of Linear Nitric Oxide Ligands in Four-Coordinate Transition Metal Complexes. Crystal and Molecular Stmcture of Dinitrosyldithioaeetylaeetonatocobalt(-I), Co(NO)2(SacSac), Inorg. Chem. 15, 2970–2977(1976).

    CAS  Google Scholar 

  97. J. S. Field, P. J. Whcatley, and S. Bhaduri, Crystal Structure of {[2-(Diphenylphosphino)ethyl]diphenyl phosphine oxide)iodonitrosylcobalt(O)}, J. Chem. Soc. Dalton Trans. 74–79(1974

    Google Scholar 

  98. B. L. Haymore, J. C. Huffman, and N. E. Butler, Linear vs. Bent Nitrosyl Ligands in Pseudotetrahcdral Nitrosyl Complexes. Low-Temperature Structure of COI(NO)2(P(CGH,)I), Inorg. Chem. 22, 168–170 (1983).

    CAS  Google Scholar 

  99. J. A. Kaduk and J. A. Ibers, Structure of Dinitrosyl(1,2-bis(diphenylphosphino)ethane)cobalt Hexafluorophosphate, [Co(NO)2((C,H5)2PC2H4P(C6,H5)2)][PF6], Inorg. Chem. 16, 3283–3287 (1977).

    Google Scholar 

  100. B. E. Rcichcrt, Dinitrosylbis(triphcnylphosphine)cobalt Hexalluorophosphate, Acta Ciystallogr., Sect. B 832,1934–1936(1976).

    Google Scholar 

  101. J.-L. Rou.stan, N. Ansari, Y. Le Page, and J.-P. Charland, Molecular Geometry of M(N0)2 Complexes: Single Crystal X-ray Stnjcture of Cobalt Nitrosyl Complexes Co(NO)2(C,sH5N)2*BF 4 Lability of the Pyridine Ligands of Co(NO)2(C5H5N)2, and Its Relevance to the Fonnation of the Co2(NO)i* Bimetalhc Core, Can. J. Chem. 70, 1650–1657 (1992).

    CAS  Google Scholar 

  102. M. Aresta, D. Ballivet-Tkatchenko, M. C. Bonnet, R. Faure, and H. Loiseleur, Synthesis and Stmctural Characterization of Co(NO)2[PhP(OCH2CH2)2NH]Cl: A Novel Carbon Dioxide Carrier, J. Am. Chem. Soc. 107, 2994–2995(1985).

    CAS  Google Scholar 

  103. A. R. Hendrickson, R. K. Y. Ho, and R. L. Martin, Four-and Five-Coordinated Nitrosyls of Cobalt Dithioacetylacetonate, Inorg. Chem. 13, 1279–1281 (1974).

    CAS  Google Scholar 

  104. J. H. Enemark and R. D. Feltham, Principles of Stracture Bonding, and Reactivity for Metal Nitrosyl Complexes, Coord. Chem. Rev. 13, 339–406 (1974).

    CAS  Google Scholar 

  105. S. A. Hilderbrand and S. J. Lippard, Cobalt Chemistiy with Mixed Aniinotroponimniate Salicylaldiminate Ligands: Synthesis, Characterization, and Nitric Oxide Reactivity, Inorg. Chem. 43, 4674–4682 (2004).

    PubMed  CAS  Google Scholar 

  106. J. Chatt, J. R. Dilworth, and R. L. Richards, Recent Advances in the Chemistiy of Nitrogen Fixation, Chem. Rev. 78, 589–625 (1978).

    CAS  Google Scholar 

  107. E. B. Boyarand S. D. Robinson, Rhodiuin(ll) Carboxylates, Coord. Chem. Rev. 50, 109–208 (1983).

    Google Scholar 

  108. S. A. Johnson, H. R. Hunt, and H. M. Neumann, Preparation and Properties of Anhydrous Rhodium(ll) Acetate and Some Adducts Thereof, Inorg. Chem. 2, 960–962 (1963).

    CAS  Google Scholar 

  109. S. A. Hilderbrand, M. H. Lim, and S. J. Lippard, Dirhodium Tetracarboxylate Scaffolds as Reversible Fluorescence-Based Nitric Oxide Sensors, J. Am. Chem. Soc. 126, 4972–4978 (2004).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Lippard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hilderbrand, S.A., Lim, M.H., Lippard, S.J. (2005). Fluorescence-based Nitric Oxide Detection. In: Geddes, C.D., Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 9. Springer, Boston, MA. https://doi.org/10.1007/0-387-23335-0_4

Download citation

Publish with us

Policies and ethics