Skip to main content

Models of Hyporheic Contamination by Non Reactive Solutes, Metals and Colloids

  • Chapter
Water Quality Hazards and Dispersion of Pollutants
  • 1088 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bencala, K. E., and Walters, R.A., 1983, Simulation of solute transport in a mountain pool-and-riffle stream: a transient storage model, Water Resour. Res., 19:718–724.

    Google Scholar 

  • Bencala, K. E., 1983, Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption, Water Resour. Res., 19(3):718–724.

    Google Scholar 

  • Bencala, K. E., 1984, Interactions of solutes and streambed, 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport, Water Resour. Res., 20(12):1804–1814.

    Google Scholar 

  • Bencala, K. E., Kennedy, V. C., Zellweger, G. W., Jackman, A. P., and Avanzino, R. J., 1984, Interactions of solutes and streambed sediment, 1. An experimental analysis of cation and anion transport in a mountain stream, Water Resour. Res., 20:1797–1803.

    Google Scholar 

  • Bencala, K. E., 1993, A perspective on stream-catchment conditions, J. N. Am. Benthol. Soc., 12(1):44–47.

    Google Scholar 

  • Castro, N. M., and Hornberger, G. M., 1991, Surface-subsurface interactions in an alluviated mountain stream channel, Water Resour. Res., 27(7):1613–1621.

    Article  Google Scholar 

  • Coleman, M. J., and Hynes, H. B. N., 1970, The vertical distribution of the invertebrate fauna in the bed of a stream, Limnol. Oceanogr., 15:31–30.

    Google Scholar 

  • Elder, J. W., 1959, The dispersion of marked fluid in turbulent shear flow, J. Fluid Mech., 5:544–560.

    Google Scholar 

  • Elliott, A. H., Brooks, N. H., 1997a, Transfer of nonsorbing solutes to a streambed with bed forms: theory, Water Resour. Res., 33(1):123–136.

    Article  Google Scholar 

  • Elliott, A. H., and Brooks, N. H., 1997b, Transfer of nonsorbing solutes to a streambed with bed forms: laboratory experiments, Water Resour. Res., 33(1):137–151.

    Article  Google Scholar 

  • Eylers, H., Brooks, N. H., and Morgan, J. J., 1995, Transport of adsorbing metals from stream water to a stationary sand-bed in a laboratory fiume, Mar. Freshw. Res., 46:209–214.

    Google Scholar 

  • Fernald, A. G., Wigington, Jr. P. J., and Dixon, H. L., 2001, Transient storage and hyporheic fiow along the Willamette River, Oregon: field measurements and model estimates, Water Resour. Res., 37(6):1681–1694.

    Google Scholar 

  • Fischer H. B., List, E. J., Koh, R. C. Y., Imberger, J., Brooks, N. H., 1979, Mixing in Inland and Coastal Waters, Academic Press, San Diego.

    Google Scholar 

  • Giuliani, D., 2003, Experimental observations of hyporheic transport in case of armoured or stratified streambed, Laurea thesis, University of Padua, Padua.

    Google Scholar 

  • Hart, D. R., 1995, Parameter estimation and stochastic interpretation of the transient storage model for solute transport in streams, Water Resour. Res., 31(2):323–328.

    Article  Google Scholar 

  • Harvey, J. W., Wagner, B. J., and Bencala, K. E., 1996, Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange, Water Resour. Res., 32(8):2441–2451.

    Google Scholar 

  • Harvey, J. W., and Fuller, C. C., 1998, Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance, Water Resour. Res., 34(4):623–636.

    Google Scholar 

  • Hynes, H. B. N., 1974, Further studies on the distribution of stream animals within the substratum, Limnol. Oceanogr., 19(1):92–99.Jackman, A. P., Walters, R. A., and Kennedy, V. C., 1984, Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara county, California, J. Hydrol., 75:111–141.

    Google Scholar 

  • Marion, A., Bellinello, M., Guymer, I., and Packman, A. I., 2002, Effect of bed form geometry on the penetration of passive solutes into a stream bed, Water Resour. Res., 38(10):1209.

    Google Scholar 

  • Marion, A., Zaramella, M., and Packman, A. I., 2003, Parameter estimation of the Transient Storage Model for stream-subsurface exchange, J. Environ. Eng., 129(5):456–463.

    Google Scholar 

  • Marion, A., and Zaramella, M., 2004, On the diffusive behaviour of bedform-induced hyporheic exchange in rivers, (submitted).

    Google Scholar 

  • Nikora, V., Goring, D., McEwan, I. K., and Griffiths, G., 2001, Spatially averaged open-channel flow over rough bed, J. Hydraul. Eng., 127(2):123–133.

    Google Scholar 

  • Mulholland, P. J., Marzolf, E. R., Webster, J. R., Hart, D. R., and Hendricks, S. P., 1997, Evidence that hyporheic zones increase hetrotrophic metabolism and phosphorus uptake in forest streams. Limnol. Oceanogr., 42:443–451.

    Google Scholar 

  • O’Connor, D. J., 1988, Models of sorptive toxic substances in freshwater systems, III: Streams and rivers, J. Environ. Eng., 114(3),552–574.

    Google Scholar 

  • Packman, A. I., Brooks, N. H., and Morgan, J. J., 2000a, A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms, Water Resour. Res., 36(8):2351–2361.

    Google Scholar 

  • Packman, A. I., Brooks, N. H., and Morgan, J. J., 2000b, Kaolinite exchange between a stream and stream bed: Laboratory experiments and evaluation of a colloid transport model, Water Resour. Res., 36(8):2363–2372.

    Google Scholar 

  • Packman, A. I., and Bencala, K. E., 2000, Modeling surface-subsurface hydrological interactions, In Jones, J. B., and Mulholland, P. J., eds., Streams and Ground Waters, Academic Press, San Diego, pp. 45–80.

    Google Scholar 

  • Packman, A. I., Salehin, M., and Zaramella, M., 2004, Hyporheic exchange with gravel beds: basic hydrodynamic interactions and bedform-induced advective flows, J. Hydraul. Eng., 130(7).

    Google Scholar 

  • Ren, J., and Packman, A. I., 2002, Effects of particle size and background water composition on stream-subsurface exchange of colloids, J. Environ. Eng., 128(7):624–634.

    Google Scholar 

  • Richardson, C. P., and Parr, A. D., 1988, Modified fickian model for solute uptake by runoff, J. Environ. Eng., 114(4):792–809.

    Google Scholar 

  • Runkel, R. L., and Chapra, S. C., 1993, An efficient numerical solution of the transient storage equations for solute transport in small streams, Water Resour. Res., 29(1):211–215.

    Google Scholar 

  • Runkel, R. L., Bencala, K. E., Broshears, R. E., and Chapra, S.C., 1996a, Reactive solute transport in streams, 1. Development of an equilibrium based model, Water Resour. Res., 32(2):409–418.

    Google Scholar 

  • Runkel, R. L., McKnight, D. M., Bencala, K. E., and Chapra, S. C., 1996b, Reactive solute transport in streams, 2. Simulation of a pH modification experiment, Water Resour. Res., 32(2):419–430.

    Google Scholar 

  • Runkel, R. L., Kimball, B. A., McKnight, D. M., and Bencala, K. E., 1999, Reactive solute transport in streams: a surface complexation approach for trace metal sorption, Water Resour. Res., 35(12):3829–3840.

    Google Scholar 

  • Rutherford, J. C., Latimer, G. J., and Smith, R. K., 1993, Bedform mobility and benthic oxygen uptake, Water Resour. Res., 27(10):1545–1558.

    Google Scholar 

  • Rutherford, J. C., Boyle, J. D., Elliott, A. H., Hatherell, T. V. J., and Chiu, T. W., 1995, Modeling benthic oxygen uptake by pumping, J. Environ. Eng., 121(1):84–95.

    Google Scholar 

  • Savant, S. A., Reible, D. D., and Thibodeax, L. J., 1987, Convective transport within stable river sediments, Water Resour. Res., 23(9):1763–1768.

    Google Scholar 

  • Stanford, J. A., and Gaufin, J. V., 1974, Hyporheic communities of two Montana rivers, Science, 185(8):700–702.

    Google Scholar 

  • Stanford, J. A., and Ward, J. V., 1988, The hyporheic habitat of river ecosystems, Nature, 335(1):64–66.

    Google Scholar 

  • Tait, S. J., Marion, A., and Camuffo, G., 2003, Effect of environmental conditions on the erosional resistance of cohesive sediment deposits in sewers, Water Sci. Technol., 47(4):27–34.

    Google Scholar 

  • Taylor, G. I., 1954, The dispersion of matter in turbulent flow through a pipe, Proc. R. Soc. Lond., A, 223:446–468.

    Google Scholar 

  • Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., and Bencala, K. E., 1989, Retention and transport of nutrients in a third-order stream in northwestern Califomia: Hyporheic process, Ecology, 70(6):1893–1905.

    Google Scholar 

  • Triska, F. J., Duff, J. H., and Avanzino, R. J., 1990, Influence of exchange flow between the channel and hyporheic zone on nitrate production in a small mountain stream, Can. J. Fish. Aquat. Sci., 47:2099–2111.

    Google Scholar 

  • Triska, F. J., Duff, J. H., and Avanzino, R. J., 1993, The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-acquatic interface, Hydrobiologia, 251(13):167–184.

    Google Scholar 

  • Vallet, H. M., Morice, J. A., Dahm, C. N., and Campana, M. E., 1996, Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnol. Oceanogr., 41(29):333–345.

    Google Scholar 

  • Wagner, B. J., and Harvey, J. W., 1997, Experimental design for esitmating parameters of rate-limited mass-transfer: Analysis of stream tracer studies, Water Resour. Res., 33(7):1731–1741.

    Google Scholar 

  • Winter, T. C., Harvey, J. W., Franke, O. H., and Alley, W. M., 1998, Ground water and surface water: A single resource, USGS Circular 1139, Denver.

    Google Scholar 

  • Worman, A., 2000, Comparison of models for transient storage of solutes in small streams, Water Resour. Res., 36(2):455–468.

    Google Scholar 

  • Wörman, A., Forsman, J., and Johansson, H., 1998, Modelling retention of sorbing solutes in streams based on a tracer experiment using 51Cr, J. Environ. Eng., 124(2):122–130.

    Google Scholar 

  • Wörman, A., Packman, A. I., Johansson, H., and Jonsson, K., 2002, Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers, Water Resour. Res., 38(1):15.

    Google Scholar 

  • Zaramella, M., Packman, A. I., and Marion, A., 2003, Application of the Transient Storage Model to analyze advective hyporheic exchange with deep and shallow sediment beds, Water Resour. Res., 39(7):1 lp.

    Google Scholar 

  • Zaramella, M., Marion, A., and Packman, A. I., 2004, Analysis of the hyporheic exchange of metals and colloids with the Transient Storage Model, (submitted).

    Google Scholar 

  • Zhou, D., and Mendoza, C., 1993, Flow through porous bed of turbulent stream, J. Eng. Mech., 119(2):365–383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Marion, A. (2005). Models of Hyporheic Contamination by Non Reactive Solutes, Metals and Colloids. In: Czernuszenko, W., Rowiński, P.M. (eds) Water Quality Hazards and Dispersion of Pollutants. Springer, Boston, MA. https://doi.org/10.1007/0-387-23322-9_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-23322-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23321-5

  • Online ISBN: 978-0-387-23322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics