Skip to main content

MEMS for Optical Functionality

  • Chapter
  • 2193 Accesses

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 9))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70(5):420–457, 1982.

    Google Scholar 

  2. P.F. Van Kessel, L. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based Projection Display”, Proc. Of the IEEE, Vol. 86, No. 8, 1998.

    Google Scholar 

  3. S.G. Kim, K.H. Hwang, J. Hwang, M.K. Koo, and K.W, Lee, “Thin-film Micromirror Array (TMA)—A New Chip-based Display Device for the Large Screen Display”, Journal of the Society of Information Display, Vo. 8, No. 2, 2000.

    Google Scholar 

  4. R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, “Deformable grating light valves for high resolution displays,” Proc. Solid State Sensor and Actuator Workshop, 1994.

    Google Scholar 

  5. S. Horsley, “DMD: From R&D to a Profitable Business,” oral presentation at the 1st International Symposium on Nanomanufacturing, Cambridge, MA, 2003; http://nanoman.mit.edu.

    Google Scholar 

  6. M. C. Wu, L.-Y. Lin, S.-S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics.” Sensors and Actuators A: Physical 50(1–2):127–134, 1995.

    Google Scholar 

  7. L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photonics Tech. Lett. 6(12):1445–1447, 1994.

    Google Scholar 

  8. M. E. Motamedi, M. C. Wu, and K. S. J. Pister, “Micro-opto-electro-mechanical devices and on-chip optical processing,” Optical Eng. 36(5):1282–1297, 1997.

    Google Scholar 

  9. J. M. Kahn, R. H. Katz and K. S. J. Pister, “Mobile Networking for Smart Dust”, ACM/IEEE Intl. Conf. on Mobile Computing and Networking, Seattle, WA, August 17–19, 1999.

    Google Scholar 

  10. S. J. Walker and D. J. Nagel, Optics and MEMS, NRL report NRL/MR/6336-99-7975, May 15, 1999, http://code6330.nrl.navy.mil/6336/moems.htm.

    Google Scholar 

  11. M. A. Chan, S. D. Collins and R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensor and Actuators A, vol, A43, pp. 196, 1994.

    Google Scholar 

  12. E.C. Vail, G.S. Li, W. Yuen, et al, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electronic Letters, vol. 32, pp. 1888, 1996.

    Google Scholar 

  13. D.T. Neilson, et al., “Fully Provisional 112×112 Micro Mechanical Optical Crossconnect with 35.8 Tb/s Demonstarted capacity,” Technical Digest of Optical Fiber Communication Conference 2000, PD-12, March 2000.

    Google Scholar 

  14. R. Corrigan, R. Cook and O. Favotte, “Silicon Light Machines-Grating Light Valve Technology Brief”, white paper, Silicon Light Machines company website, http://www.siliconlight.com/htmlpgs/glvtechframes/glvmainframeset.html.

    Google Scholar 

  15. C. Wong, W. Shih, Y. Jeon, S. Desai, S. Kim and G. Barbastathis, “ Analog tunable gratings with sub-nanometer resolution”, Proc. of Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, June, 2002.

    Google Scholar 

  16. W. Lukosz, “Integrated optical nanomechanical devices as modulators, switches, and tunable frequency filters, and as acoustical sensors,” presented at Integrated Optics and Microstructures, Boston, MA, 1993.

    Google Scholar 

  17. W. Lukosz, “Integrated optical chemical and direct biochemical sensors”, Sensors and Actuators B, 29, 1995, pp. 37–50.

    Google Scholar 

  18. Y. K. Kim, J. M. Bae, S. Y. Son, J. H. Choi, and S. G. Kim, “High Speed Atomic Force Microscope Cantilevers with Built-in Piezoelectric Actuator”, Proc. of MOEMS ‘99, Mainz, Germany, September 1999.

    Google Scholar 

  19. Chee-wei Wong, Yongbae Jeon, G. Barbastathis and Sang-Gook Kim, “Analog tunable gratings driven by thin-film piezoelectric microelectro mechanical system actuators”, Applied Optics, Vol. 42, No. 4, 2003.

    Google Scholar 

  20. E.S. Hung and S. D. Senturia, “Extending Travel Range of Analog-tuned Electrostatic Actuators”, J. of Microelectromechanical Systems, V. 8, N. 4, 1999.

    Google Scholar 

  21. R.A. Wood, C.J. Han, and P.W. Kruse, “Integrated uncooled infrared detector imaging arrays,” Proc. IEEE Solid-State Sensor and Actuator Workshop, 1992.

    Google Scholar 

  22. H.K. Lee, J.B. Yoon, E. Yoon, S.B. Ju, Y.J. Yong, W. Lee and S.G. Kim, “A High Fill-Factor Infrared Bolometer using Micromachined Multilevel Electrothermal Structures”, IEEE Trans. on Electron Devices, Vol. 46, No. 7, July 1999.

    Google Scholar 

  23. R. Dangel and W. Lukosz, “Electro-nanomechanically actuated integrated-optical interferometric intensity modulators and 2 × 2 space switches,” Opt. Commun. 156:63–76, 1998.

    Google Scholar 

  24. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19):1671–1672, 1995.

    Google Scholar 

  25. S. Kinoshita, K. Morito, F. Koyama, and K. Iga, “Reproducible fabrication of AlAs/GaAs circular buried heterostructure (CBH) surface-emitting lasers with low threshold,” Electron. Lett. 24(11):699–700, 1988.

    Google Scholar 

  26. J. L. Jewell, A. Scherer, S. L. McCall, Y.-H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25(17):1123–1124, 1989.

    Google Scholar 

  27. C. J. Chang-Hasnain, “1.55-µm tunable VCSEL for metro-WDM applications,” Proc. SPIE 4580: 40–45, 2001.

    Google Scholar 

  28. W.-C. Shih, C. Hidrovo, S.-G. Kim, and G. Barbastathis, “Optical diversity by nanoscale actuation,” IEEE Nanotechnology conference, San Francisco, CA, August 2003.

    Google Scholar 

  29. M. Bertero and P. Boccacci, “Introduction to inverse problems in imaging,” Institute of Physics Publishing, 1998.

    Google Scholar 

  30. L. J. Hornbeck, “The DMD (TM) projection display chip: A MEMS-based technology,” MRS Bulletin, vol. 26, p. 325, 2001.

    Google Scholar 

  31. H. Hogan, “Microelectromechanical systems: A little shake, rattle and roll,” Photonics Spectra, vol 36, no. 10, p. 68, 2002.

    Google Scholar 

  32. R.T. Chen, H. Nguyen and M.C. Wu, “A high-speed low-voltage stress-induced micromachined 2 × 2 optical switch,” IEEE Photonics Tech. Lett. Vol. 11, no. 11, p. 1396, 1999.

    Google Scholar 

  33. M. Tabib-Azar, Integrated Optics, Microstructures and Sensors, Kluwer Academic Publ., Boston, MA, 1995, p. 171.

    Google Scholar 

  34. B.W. Wessels, “Ferroelectric oxide epitaxial thin films: synthesis and non-linear optical properties,” J. Crystal Growth, 195, 706 (1998).

    Google Scholar 

  35. R.L. Holman, L.M. Althouse Johnson and D.P. Skinner, “The desireability of electrooptic ferroelectric materials for guided-wave optics,” Proc. 6th IEEE Int. Symp Appl. Ferroelectrics, Lehigh Univ. Bethlehem, PA, 1986, p. 32.

    Google Scholar 

  36. P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review” J. Micromech. Microeng. 10, 136 (2000).

    Google Scholar 

  37. G. Chik, “Optical Component Evolution/Revolution,” International Workshop on Future Trends in Microelectronics: the Nano Millennium, Ile de Bendor, France (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kim, SG., Barbastathis, G., Tuller, H.L. (2005). MEMS for Optical Functionality. In: Setter, N. (eds) Electroceramic-Based MEMS. Electronic Materials: Science and Technology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/0-387-23319-9_8

Download citation

Publish with us

Policies and ethics