Skip to main content

High Frequency Tuneable Devices Based on Thin Ferroelectric Films

  • Chapter
Electroceramic-Based MEMS

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. G. Vendik, “Microwave Tuneable Components and Subsystems Based on Ferroelectrics: Physics and Principles of Design”, Integrated Ferroelectrics, vol. 49, pp. 181–190, 2002

    Google Scholar 

  2. S. Muller, C. Weil, P. Scheele, Y. Kryvoshapka, and R. Jakoby, “Novel Liquid Crystals for Tuneable Microwave Components”, “Tuneable Ferroelectric Microwave Devices”, IMS’2004 Workshop on New Technologies for Frequency-or Phase-Agile Microwave Circuits and Systems

    Google Scholar 

  3. Koul S. K., Bhat B., Microwave and Millimeter Wave Phase Shifters, Artech House, 1991

    Google Scholar 

  4. Gevorgian S., “Tuneable ferroelectric/piezoelectric devices”, Chapter in book Piezoelectric Materials and Devices (N. Setter Ed.), Lausanne, Switzerland, 2002

    Google Scholar 

  5. G. Rebeiz, RF MEMS Theory, Design, and Technology, Wiley, 2003

    Google Scholar 

  6. Nanoelectronics and Nanoscale Processing. Special Issue, Proc. IEEE, vol. 91, No 11, 2003

    Google Scholar 

  7. Nanotubes hold promise for RF, Wireless Europe, p. 13, October 2003

    Google Scholar 

  8. Hristoforou E., Hauser H, and Niarcos D, Magnetostrictive delay line characterisation”, Journal of Magnetism and Magnetic Materials, 242–245, 2002

    Google Scholar 

  9. Spintronics Technology. Special Issue, Proc. IEEE, vol. 91, No 5, 2003

    Google Scholar 

  10. A. Viulcot, B. Cabon, and J. Chazelas (Editors), Microwave Photonics, Kluwer Publ., 2003

    Google Scholar 

  11. Kuki T., Fujikake H., and Nomoto T., “Microwave Variable Delay Line Using Dual-Frequency Switching mode Liquid Crystals”, IEEE Trans. Microwave Theory Techn., Vol. 50, pp. 2604–2608

    Google Scholar 

  12. Demidov V. E., Kalinikos B. A, Karmanenko S. F, Semenov A. A., and Edenhofer P, “Electrical tuning of disperssion characteristics of surface electromagnetic-spin waves propagating in ferrite-ferroelectric layersed structure”, IEEE Trans., Microwave Theory Techn., vol. 51, pp. 2090–2096, 2003

    Google Scholar 

  13. Jia Q. X., et al. “Integration of nonlinear dielectric barium strontium titanate with polycrys-talline yttrium iron garnet”, Appl. Phys. Lett., vol. 74, pp. 1564–1566

    Google Scholar 

  14. Gevorgian S., Abadei S., Berg H., and Jacobsson H., “MOS Varactors with Ferroelectric Films”, IEEE MTT-S2001 Dig., vol. 2, pp. 1195–1197, 2001

    Google Scholar 

  15. Fiallo H. H., et al. “Transmission properties of metal-semiconductor-relaxor microstrip lines”, IEEE Trans. Microwave Theory Techn., vol. 42, pp.1176–1182

    Google Scholar 

  16. Seriacco J., Acikel B., Hansen p., Taylor T., Xu H., Speck J. S., and R. York, “Tuneable passive integrated circuits using BST thin films”, Integrated Ferroelectrics, vol. 49, pp. 161–170, 2002

    Google Scholar 

  17. S. Gevorgian, and E. Kollberg, “Do we really need ferroelectrics in paraelectric state only in electrically controlled microwave devices”? IEEE Trans. Micr. Theory Techn., Vol. 49, pp., 2117–2124, 2001

    Google Scholar 

  18. S. Gevorgian, “Quantum Paraelectrics in Tuneable Microwave Devices: Promises, Current Status and Problems”, IEEE Int. Microwave Symposium Workshop on Ferroeletric Materials and Devices for Microwave Applications, Philadelphia, June 2003

    Google Scholar 

  19. Lemanov etc., Solid State Communic. 110, 611–614 (1999)

    Google Scholar 

  20. O. G. Vendik, I. B: Vendik, and E. Kollberg, “Commutation Quality Factor of Two State Switchable Devices” IEEE Trans. Microwave Theory Techn., vol. 48, pp. 802–808, 2000

    Google Scholar 

  21. Acki B. Liu Y., Naga A. S., Taylor T.R., Hansen P. J., Speck J.S., and R. York, “Phase shifters using (BaSr)TiO3 thin films on sapphire and glass substrates”, IEEE MTT-S’2001, pp.

    Google Scholar 

  22. Kozyrev A. B., Gaidukov M. M., Gagarin A. G., Tumarkin A. V., and Razumov S. V., “A finline 60-GHz phase shifter based on a (Ba,Sr)TiO3 ferroelectric thin film”, Technical Physics Letters, vol. 38, pp. 239–241, 2002

    Google Scholar 

  23. Erker E. G., Nagra A. S., Liu Y., Periaswamy P., Taylor T. R., Speck J., and York R. A., “Monolithic Ka-band phase shifter using voltage tuneable BaSrTiO3 parallel-plate capacitors”, IEEE Microwave and guided Weave Letters, vol. 10, pp. 1012, 2000

    Google Scholar 

  24. S. Abadei, S. Gevorgian, C.-R. Cho, and A. Grishin, “Low frequency and Microwave Performances of Laser Ablated Epitaxial Na0.5K0.5NbO3 Films on High Resistivity SiO2/Si Substrates”, J. Appl. Phys, Vol. 91, pp. 2267–2276, 2002

    Google Scholar 

  25. Carlsson E. F, Petrov P K., Chakalov R. A., Larsson P, Ivanov Z., and Gevorgian S., “Experimental study of thin film HTS/ferroelectric CPW phase shifters for microwave applications”, Inst. Phys. Conf. Ser. No158 (UK), pp. 339–342, 1997

    Google Scholar 

  26. S. W. Kirchoefer, J. M. Pond, A.C. Carter, W. Chang, K. K. Agarwal, J. S. Horwitz, and D. B. Chrisley, Microwave and Optical Technology Letters, 18, 168 (1998)

    Google Scholar 

  27. http://agilematerials.com

    Google Scholar 

  28. Van Keuls F W., Romanofsky R. R., Boham D. Y., Winters M. D., Miranda F A., Mueller C. H., Treece R. E., Rivkin T. V., and Galt D., “YBCO,Au)/STO/LAO thin film conductor/ferroelectriccoupled microstrip phase shifters for phased array applications”, Appl. Phys. Lett., vol. 71, pp. 3075–3077, 1997

    Google Scholar 

  29. S. Delpat, M. Ouaddari, F Vidal, M. Chaker, and K. Wu, “Voltage and Frequency Dependnet Dielectric Properties of BST-0.5 Thin films on Alumina Substrate”, IEEE Microwave and Wireless Components Letters, vol. 13, pp. 211213, 2003

    Google Scholar 

  30. A. Vorobiev, P. Rundqvist, K. Khamchane, S. Gevorgian, “Silicon substrate integrated high Q-factor parallel-plate ferroelectric varactors for microwave/millimeterwave applications”, Appl. Phys. Letters, Vol.83, p. 3144, 2003

    Google Scholar 

  31. A. Vorobiev, P. Rundqvist, K. Khamchane, and S. Gevorgian, “Microwave Loss Mechanisms in Ba0.25Sr0.75TiO3 Thin Film Varactors”, Accepted for publication, Appl. Phys. Letter, 2004

    Google Scholar 

  32. E. Kollberg, J. Stake, and L. Dillner, “Heterostructure barrier varactors at submillimetre waves”, Phil. Trans. R. Soc. Lond., A, vol. 354, pp. 2383–2398, 1996

    Google Scholar 

  33. P. Rundqvist, A. Vorobiev, S. Gevorgian, “Large Signal Circuit Model of Parallel-Plate Ferroelectric Varactors”, Proc. EuMC’2004

    Google Scholar 

  34. S. Gevorgian, H. Berg, H. Jacobsson, and T. Lewin, “Basic Parameters of Coplanar-Strip Waveguides on Multilayer Dielectric/Semiconductor Substrates. Part 1: High Permittivity Superstrates”, IEEE Microwave Magazine, pp. 60–70, June 2003

    Google Scholar 

  35. S. S. Gevorgian, T. Martinsson, P. Linnér, E. Kollberg, “CAD Models for Multilayered Substrate Interdigital Capacitors”, IEEE Trans. Microwave Theory Techn., vol. 44, No. 6, pp. 896–904, 1996

    Google Scholar 

  36. S. Gevorgian, P. K. Petrov, Z. Ivanov, and E. Wikborg, “Tailoring the temperature coefficient of capacitance in ferroelectric varactors”, Appl., Phys. Lett, Vol. 79, pp. 1861–1863, 2001

    Google Scholar 

  37. N. A. Pertsev, Tagantsev, and N. Setter, “Phase transitions and strain induced ferroelectricity in SrTiO3 epitaxial films”, Phys. Rev. B, vol. 61, pp. R825–R829, 2000-II

    Google Scholar 

  38. A. Kozyrev, A. Ivanov, T. Samiolova, O. Soldatenkov, and A. Astafiev, “Nonlinear Response and PowerHandling Capability of Ferroelectric BaxSr1−xTiO3 Film Capacitors and Tuneable Microwave Devices”, J. Appl. Phys., vol. 88, pp. 5334–5342, 2000

    Google Scholar 

  39. Y.-K. Yoon, D. Kim, M. G. Allen, J. S. Kenney, and A. T. Hunt, “A reduced Intermodulation Distortion Tuneable Ferroelectric Capacitor-Architechture and Demonstration”, IEEE Trans. Microwave Theory Techn., vol. 51, pp. 2568–2576, 2003

    Google Scholar 

  40. T. B. Samoilova, K. F. Astafev, T. Rivkin, and D. S. Ginley, “Frequency conversion in coplanar waveguide based on BaxSr1−xTiO3 film”, J. Appl. Phys., vol. 90, pp. 5703–5707, 2001

    Google Scholar 

  41. A. T. Findikoglu, Q. X. Jia, D. W. Roger, and X. D. Wu, Electron. Lett., vol. 31, pp. 1814–1816, 1995

    Google Scholar 

  42. Tunable Filters, Pole/Zero Corp

    Google Scholar 

  43. Oats D. E., and Dionne J. F., “Magnetically tuneable resonators and filters”, IEEE trans. Appl. Supercond., vol. 9, pp. 4170–4175, 1999

    Google Scholar 

  44. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, McGraw-Hill, N. Y., 1964

    Google Scholar 

  45. A. Tombrak, J.-Paul Maria, T. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Voltage-Controlled RF Filters Employing Thin-Film Barium-Strontium-Titanate Tuneable Capacitors”, IEEE Trans. Microwave Theory and Techn., vol. 51, pp. 462–576, 2003

    Google Scholar 

  46. B. H. Moeckly, and Y. Zhang, “Strontium Titanate Thin Films for Tuneable YBa2CU3O7 Falters”, IEEE trans. Appl. Supercond., vol. 11, pp. 450–453, 2001

    Google Scholar 

  47. A. Kozyrev, O. Basov, A. Gagarin, A. Ivanov, D. Kosmin, S. Krasilnikov, A. Pavlov, and A. Zemtsov, “Tuneable ferrelectric Microwave Devices”, IMS’2004 Workshop on New Technologies for Frequency-or Phase-Agile Microwave Circuits and Systems

    Google Scholar 

  48. F Miranda, C. H. Mueller, F. W. Van Keuls, G. Subramanyam, and S. Vignesparamoorthy, “Performance enhancement of Tuneable Bandpass Filters using Ferroelectric Thin Films”, Integrated ferroelectrics, vol. 50, pp. 121–131, 2002

    Google Scholar 

  49. I. Vendik, O. Vendik, V. Pleskachev, a. Svischev, and R. Wördenweber, “Design of Tuneable Ferroelectric Filters with a Constant Fractional Bandwidth”, IEEE Int. Microwave Symposium, pp. 1461–1464, 2001

    Google Scholar 

  50. Jung Y. J., Lee S. W. Shim D., Kim W., Kim C., and Cho S. I., “A dual loop delay locked loop using multiple voltage controlled delay lines”, IEEE J. Solid State Circuits, vol. 35, pp. 784–791, 2001

    Google Scholar 

  51. Koo R. C., and Long J. R., “An inductively tuned quadrature oscillator with extended frequency control range”, Proc. 2003 IEEE Int. Symposium on Circuits and Systems, vol. 1, pp. 709–712

    Google Scholar 

  52. Seo C., “Novel phase shift line in feedforward circuit using photonic bandgap”, Microwave and Optical technology lett., vol. 38, pp. 357–359, 2003

    Google Scholar 

  53. Rubin B. J., and Singh B., “Study of meander line delay in circuit boards”, IEEE Trans. Microwave Theory. Techn., vol. 48, pp. 1452–1460, 2000

    Google Scholar 

  54. Dudek P., Szczepanski S., and Hatfield J. V., “A high resolution CMOS time-to-digital converter utilizing a vernier delay line”, IEEE J. Solid Stae Circ., vol. 35(2), pp. 240–247, 2000

    Google Scholar 

  55. DeGroot D. C., Beall A. J., Marks R. B., and Rudman D. A., “Tuneable Microwave properties of YBCO/STO thin film transmission lines”, IEEE Appl. Supercond., Vol. 5, pp. 2272–2275, 1995

    Google Scholar 

  56. D. Kuylenstierna, A. Vorobiev, P. Linnér, and S. Gevorgian, “Ferroelectrically Tuneable Delay-lines”, Proc. EuMC 2004

    Google Scholar 

  57. Sherman V., Astafiev K., Setter N., Vendik O., Vendik I., Hoffman-Eifert S., Böttger U., and Waser R., “Digital reflection type phase shifter based on a ferroelectric planar capacitor”, IEEE Micr. Wireless Comp. Letters, vol. 11, pp. 407–409, 2001

    Google Scholar 

  58. Kozyrev A., Ivanov A., Keis V., Khazov M., Osadchy V., Samoilova T., Soldatenkov O., Pavlov A., Koepf G., Mueller C., Galt D., and Rivkin T., “Ferroelectric films: Nonlinear properties and applications in microwave devices”, Dig. IEEE MTT-S’1998, pp. 985–988

    Google Scholar 

  59. J. Serraiocco, B. Acikel, P. Hansen, T. Taylor, H. Xu, J. S. Speck, and R. A. York, “Tuneable Passive Integrated circuits Using BST Thin Films”, Integrated Ferroelectrics, vol. 49, pp. 161–170, 2002

    Google Scholar 

  60. A. Deleniv, S. Abadei, and S. Gevorgian, “Tuneable Ferroelectric Filter-Phase Shifter”, Dig., IEEE Int. Microwave Symposium, Vol. 2, pp. 2003

    Google Scholar 

  61. D. Kim, Y. Choi, M. Ahn, M. G. Allen, J. S. Kenney, and P. Marry, “2.4 GHz Continuously Variable Ferroelectric Phase Shifters Using All-Pass Networks”, IEEE Microwave and Wireless Comp. Letters., vol. 13, pp. 434–436, 2003

    Google Scholar 

  62. B. Romanofsky, “Broadband, Low-Loss K-and Ka Band Phase Sifters based on Thin Ferroelectric Films”, IMS’2004 Workshop on New Technologies for Frequency-or Phase-Agile Microwave Circuits and Systems

    Google Scholar 

  63. F A. Miranda, G. Subramanyam, F. W. Van Keus, R. Romanofsky, J. D. Warner, and C. H. Mueller, “Design and Development of Ferroelectric Tuneable Microwave Components for Ku-and K-Band Satellite Communication Systems”, IEEE Trans. Microwave Theory Techn., vol. 48, pp. 1181–1189, 2000

    Google Scholar 

  64. R. Romanofsky, J. Bernhard, F. Van Keuls, F. Miranda, G. Washington, and C. Caney, “K-band Phased Array Antennas Based on Ba0.6Sr0.4TiO3 Thin Film Phase Shifters”, IEEE Trans. Microwave Theory Techn., vol. 48, pp. 2504–2510, 2000

    Google Scholar 

  65. http://www.globalspec.com/ParatekMicrowave

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Gevorgian, S. (2005). High Frequency Tuneable Devices Based on Thin Ferroelectric Films. In: Setter, N. (eds) Electroceramic-Based MEMS. Electronic Materials: Science and Technology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/0-387-23319-9_7

Download citation

Publish with us

Policies and ethics