Skip to main content

Self-Assembled Nanomagnets

  • Chapter

Abstract

This chapter reviews recent progress in the field of self-assembled nanomagnets. Emphasis is on the fabrication of self-assembled nanomagnets by solution-phase chemical approaches. After outlining the general concepts of self-assembly; we describe several common chemical procedures leading to monodisperse magnetic nanoparticles. Considered examples are Co, iron oxide and FePt nanoparticles. Our review also includes including the preparation of the assemblies, the particle-shape effect on self-assembled structures, interparticle spacing control in self-assembled nanoparticle superlattices, and the magnetic properties of these arrays. The last part of the chapter is devoted to potential applications of the magnetic nanoparticle arrays in information storage, tunneling devices, and permanent magnets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Morrish, “Physical Principles of Magnetism”, Wiley, New York 1965.

    Google Scholar 

  2. B. D. Cullity, “Introduction to Magnetic Materials”, Addison-Wesley, Reading, Massachusetts 1972.

    Google Scholar 

  3. C. L. Chien, Mat. Res. Soc. Symp. Proc. 195, 411 (1990).

    Article  Google Scholar 

  4. A. Ullman, Adv. Mater. 2, 573 (1990).

    Article  Google Scholar 

  5. G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science 254, 1312 (1991).

    Article  ADS  Google Scholar 

  6. S. I. Stupp, V. LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser, and A. Amstuz, Science 276, 384 (1997).

    Article  Google Scholar 

  7. N. C. Seeman, Acc. Chem. Res. 30, 357 (1997).

    Article  Google Scholar 

  8. G. M. Whitesides and M. Boncheva, PNAS 99, 4769 (2002).

    Article  ADS  Google Scholar 

  9. H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, “Molecular Cell Biology”, W. H. Freeman, New York 2000.

    Google Scholar 

  10. J. Shimoiizaka and K. Nakatsuka, “Recent Magnetics for Electronics”, 21, 241 (1985/1986).

    Google Scholar 

  11. D. H. Everett, “Basic Principles of Colloid Science”, Royal Society of Chemistry, 1988.

    Google Scholar 

  12. C. B. Murray, S. Sun, H. Doyle, and T. Betley, MRS Bulletin 26, 985 (2001).

    Google Scholar 

  13. T. Hyeon, Chem. Comm. 927 (2003); M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and V. G. Harris, Int. Mater. Rev. 49, 125 (2004).

    Google Scholar 

  14. B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, Chem. Rev. 104, 3893(2004).

    Article  Google Scholar 

  15. J. Park, E. Lee, N.-M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, and T. Hyeon, Angew. Chem. Int. Ed. 44, 2872 (2005).

    Article  Google Scholar 

  16. M. Green, Chem. Commun. 3002 (2005).

    Google Scholar 

  17. D. L. Huber, Small 1, 482 (2005).

    Article  Google Scholar 

  18. I. Lisiecki, J. Phys. Chem. B 109, 12231(2005).

    Article  Google Scholar 

  19. S. I. Woods, J. R. Kirtley, S. Sun, and R. H. Koch, Phys. Rev. Lett. 87, 137205(2001).

    Article  ADS  Google Scholar 

  20. V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science 291, 2115 (2001).

    Article  ADS  Google Scholar 

  21. Y. Gao, Y. Bao, M. Beerman, A. Yasuhara, D. Shindo, and K. M. Krishnan, Appl. Phys. Lett. 84, 3361 (2004).

    Article  ADS  Google Scholar 

  22. Y. Bao, M. Beerman, A. B. Pakhomov, and K. M. Krishnan, J. Phys. Chem. B 109,7220 (2005).

    Article  Google Scholar 

  23. F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, and P. Zurcher, Angew. Chem. Int. Ed. 42, 5213 (2003).

    Article  Google Scholar 

  24. S. Sun and C. B. Murray, J. App. Phys. 85, 4325 (1999).

    Article  ADS  Google Scholar 

  25. C. Petit, A. Taleb, and M. P. Pileni, J. Phys. Chem. B 103, 1805 (1999).

    Article  Google Scholar 

  26. M. D. Bemtzon, J. van Wonterghem, S. Morup, A. Tholen, and C. J. W. Koch, Phil. Mag. B 60, 169 (1989).

    Article  Google Scholar 

  27. K. S. Suslick, M. Fang, and T. Hyeon, J. Am. Chem. Soc. 118, 11960 (1996).

    Article  Google Scholar 

  28. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2005).

    Article  Google Scholar 

  29. F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, and P. Fejes, Science 303, 821(2004).

    Article  ADS  Google Scholar 

  30. J. Rockenberger, E. C. Scher, and A. P. Alivisatos, J. Am. Chem. Soc. 121, 11595(1999).

    Article  Google Scholar 

  31. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc. 123, 12798(2001).

    Article  Google Scholar 

  32. F. X. Redl, K.-S. Cho, C. B. Murray, and S. O’Brien, Nature 423, 968 (2003).

    Article  ADS  Google Scholar 

  33. J. Cheon, N.-J. Kang, S.-M. Lee, J.-H. Lee, J.-H. Yoon, and S. J. Oh, J. Am. Chem. Soc. 126, 1950 (2004).

    Article  Google Scholar 

  34. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nature Mater. 3, 891 (2004).

    Article  ADS  Google Scholar 

  35. W. W. Yu, J. C. Falkner, C. T. Yavuz, V. L. Colvin, Chem. Comm., 2306 (2004).

    Google Scholar 

  36. S. Sun and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).

    Article  Google Scholar 

  37. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, J. Am. Chem. Soc. 126, 273 (2004).

    Article  Google Scholar 

  38. Q. Song and Z. J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004).

    Article  Google Scholar 

  39. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).

    Article  ADS  Google Scholar 

  40. S. Sun, E. E. Fullerton, D. Weller, and C. B. Murray, IEEE Trans Magn. 37, 1239(2005).

    ADS  Google Scholar 

  41. M. Chen, J. P. Liu, and S. Sun, J. Am. Chem. Soc. 126, 8494 (2005).

    Google Scholar 

  42. S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, and B. D. Terris, J. Phys. Chem. B. 107, 5419 (2003).

    Article  Google Scholar 

  43. C. Liu, X. Wu, T. Klemmer, N. Shukla, X. Yang, D. Weller, A. G. Roy, M. Tanase, and D. Laughlin, J. Phys. Chem. B. 108, 6121 (2005).

    Article  Google Scholar 

  44. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. Betley, and C. R. Kagan, IBM J. Res. & Dev. 45, 47 (2001).

    Article  Google Scholar 

  45. Z. L. Wang, D. R. Dai, and S. Sun, Adv. Mater. 12, 1944 (2000).

    Article  Google Scholar 

  46. H. Zeng, P. M. Rice, S. X. Wang, and S. Sun, J. Am. Chem. Soc. 126, 11458 (2005).

    Article  Google Scholar 

  47. S. Sun, C. B. Murray, and H. Doyle, Mat. Res. Soc. Symp. Proc. 577, 385 (1999).

    Google Scholar 

  48. Z. R. Dai, S. Sun, and Z. L. Wang, Nano Lett. 1, 443 (2001).

    Article  ADS  Google Scholar 

  49. G. Decher, Science 277, 1232 (1997).

    Article  Google Scholar 

  50. Y. Liu, A. Wang, and R. Claus, J. Phys. Chem. B 101, 1385 (1997).

    Article  Google Scholar 

  51. T. Cassagneau, T. E. Mallouk, and J. H. Fendler, J. Am. Chem. Soc. 120, 7848 (1998).

    Article  Google Scholar 

  52. J. Schmitt, P. Mächtle, D. Eck, H. Möhwald, and C. A. Helm, Langmuir 15, 3256(1999).

    Article  Google Scholar 

  53. N. A. Kotov, MRS Bulletin, 992 (2001).

    Google Scholar 

  54. J. F. Hicks, Y. Seok-Shon, and R. W. Murray, Langmuir 18, 2288 (2002).

    Article  Google Scholar 

  55. F. Hua, T. Cui, and Y. Lvov, Langmuir 18, 6712 (2002).

    Article  Google Scholar 

  56. S. Sun, S. Anders, H. Hamann, J.-U. Thiele, J. E. E. Baglin, T. Thomson, E. E. Fullerton, C. B. Murray, and B. D. Terris, J. Am. Chem. Soc. 124, 2884 (2002).

    Article  Google Scholar 

  57. H. Zeng, S. Sun, T. S. Vedantam, J. P. Liu, Z. R. Dai, and Z. L. Wang, Appl. Phys. Lett. 80, 2583 (2002).

    Article  ADS  Google Scholar 

  58. M. J. Vos, R. L. Brott. J.-G. Zhu, and L. W. Carlson, IEEE Trans. Magn. Magn. 29, 3652 (1993).

    Article  ADS  Google Scholar 

  59. L. M. Malkinski, J.-Q. Wang, J. Dai, J. Tang, and C. J. O’Connor, Appl. Phy. Lett. 75, 844 (1999).

    Article  ADS  Google Scholar 

  60. P. Allia, M. Coisson, M. Knobel, P. Tiberto, and F. Vinai, Phys. Rev. B 60, 12207 (1999).

    Article  ADS  Google Scholar 

  61. H. Rubio and S. Suarez, J. Appl. Phys. 87, 7415 (2000).

    Article  ADS  Google Scholar 

  62. C. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl. Phys. 88, 967 (2000).

    Article  ADS  Google Scholar 

  63. Y. Sun, M. B. Salamon, K. Gamier, and R. S. Averback, Phys. Rev. Lett. 91, 167206 (2003).

    Article  ADS  Google Scholar 

  64. D. Weller and M. E. Doerner, Annu. Rev. Mater. Sci. 30, 611 (2000).

    Article  ADS  Google Scholar 

  65. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phys. D: Appl. Phys. 35, R157 (2002).

    Article  ADS  Google Scholar 

  66. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. Magn. 36, 10 (2000).

    Article  ADS  Google Scholar 

  67. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, Science 273, 1690 (1996).

    Article  ADS  Google Scholar 

  68. R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Herderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger, Science 272, 1323 (1996).

    Article  ADS  Google Scholar 

  69. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, Nature 389, 699(1997).

    Article  ADS  Google Scholar 

  70. D. J. Schiffrin, MRS Bulletin, 1015 (2001).

    Google Scholar 

  71. C. T. Black, C. B. Murray, R. L. Sandstrom, and S. Sun, Science 290, 1131 (2000).

    Article  ADS  Google Scholar 

  72. E. F. Kneller and R. Hawig, IEEE. Trans. Magn. 27, 3588 (1991).

    Article  ADS  Google Scholar 

  73. R. Skomski and J. M. D. Coey, Phys. Rev. B 48 15812 (1993).

    Article  ADS  Google Scholar 

  74. T. Schrefl, H. Kronmüller, and J. Fidler, J. Magn. Magn. Mater. 127, L273 (1993).

    Article  ADS  Google Scholar 

  75. H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature 420, 395 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sun, S. (2006). Self-Assembled Nanomagnets. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA. https://doi.org/10.1007/0-387-23316-4_9

Download citation

Publish with us

Policies and ethics