Skip to main content

Cluster-Assembled Nanocomposites

  • Chapter
Advanced Magnetic Nanostructures

Abstract

This chapter focuses on a gas-aggregation technique to prepare magnetic nanoclusters with controllable cluster sizes and size distributions. The review includes current research on nanoclusters, such as uncoated and oxide-coated Fe, Co and Fe clusters and clusters made from alloys, but special emphasis is on highly anisotropic Ll0-ordered FePt clusters, which are of potential interest for magnetic recording with ultrahigh areal densities of more than 1 Tera bit/in2. In particular, we discuss magnetic and structural properties of FePt nanoclusters and thin films. Another approach discussed in the chapter is to create cluster nanocomposites by multilayering with post-deposition annealing. The advantage of this method is that the clusters can be oriented along a desired easy axis. One example is L10-(001) oriented FePt nanocomposite films with a FePt cluster size of about 5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Haberland (Ed.), “Clusters of Atoms and Molecules”, Springer-Verlag, 1994.

    Google Scholar 

  2. W. Ekardt (Ed.), “Metal Clusters”, Whily 1999.

    Google Scholar 

  3. K.-H. Meiwes-Broer (Ed.), “Metal Cluster at Surfaces”, Springer 2000.

    Google Scholar 

  4. J. P. Bucher, D. C. Douglass, and L.A. Bloomfield, Phys. Rev. Lett. 66, 3052 (1991).

    Article  ADS  Google Scholar 

  5. I. M. L. Billas, J. A. Becker, A. Châtelain, and W. A. de Heer, Phys. Rev. Lett. 71, 4067 (1993).

    Article  ADS  Google Scholar 

  6. I. M. L. Billas, A. Châtelain, and W. A. de Heer, Science 265, 1682 (1994).

    Article  ADS  Google Scholar 

  7. I. M. L. Billas, W. A. de Heer, and A. Châtelain, J. Non-Cryst. Solids 179, 316 (1994).

    Article  ADS  Google Scholar 

  8. A. J. Cox, J. G. Louderback, S. E. Apsel, and L.A. Bloomfield, Phys. Rev. B 49, 12295 (1994).

    Article  ADS  Google Scholar 

  9. S. E. Apsel, J. W. Emmert, J. Deng, and L. A. Bloomfield, Phys. Rev. Lett. 76, 1441 (1996).

    Article  ADS  Google Scholar 

  10. K. W. Edmonds, C. Binns, S. H. Baker, S.C. Thornton, and C. Norris, Phys. Rev. B 60, 472 (1999).

    Article  ADS  Google Scholar 

  11. S. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, Appl. Phys. Lett. 73, 3453 (1998).

    Article  ADS  Google Scholar 

  12. M. Yu, Y. Liu, A. Moser, D. Weller, and D. J. Sellmyer, Appl. Phys. Lett. 75, 3992 (1999).

    Article  ADS  Google Scholar 

  13. B. Bian, K. Sato, and Y. Hirotsu, Appl. Phys. Lett. 75, 3686 (1999).

    Article  ADS  Google Scholar 

  14. T. Suzuki, T. Kiya, N. Honda, and K. Ouchi, J. Magn. Magn. Mater. 235, 312 (2001).

    Article  ADS  Google Scholar 

  15. T. Yang, E. Ahmad, and T. Suzuki, J. Appl. Phys. 91, 6860 (2002).

    Article  ADS  Google Scholar 

  16. R. Wood, IEEE Trans. Magn. 36, 36 (2000).

    Article  ADS  Google Scholar 

  17. R. A. McCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966).

    Article  ADS  Google Scholar 

  18. B. Zhang and W.A. Soffa, IEEE Trans. Magn. 26, 1388 (1990).

    Article  ADS  Google Scholar 

  19. E. E. Fullerton, C. H. Sowers, J. E. Pearson, S. D. Bader, J. B. Patel, and X. Z. Wu, J. Appl. Phys. 81, 5937 (1997).

    Article  Google Scholar 

  20. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).

    Article  ADS  Google Scholar 

  21. H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature 420, 395 (2002).

    Article  ADS  Google Scholar 

  22. H. Haberland, M. Karrais, M. Mall and Y. Thurner, J. Vac. Sci. Technol. A 10, 3266 (1992).

    Article  ADS  Google Scholar 

  23. K. Sattler, J. Muhlbach, and E. Recknagel, Phys. Rev. Lett. 45, 821 (1980).

    Article  ADS  Google Scholar 

  24. S. S. Riley, E. Parks, C. Mao, L. Pobo, and S. J. Wexler, Phys. Chem. 86, 3911 (1982).

    Article  Google Scholar 

  25. F. Frank, W. Schulze, B. Tesche, J. Urban, and B. Winter, Surf. Sci. 156, 90 (1985).

    Article  ADS  Google Scholar 

  26. H. Schaber, T. P. Martin, Surf. Sci. 156, 64 (1985).

    Article  ADS  Google Scholar 

  27. S. H. Baker, S. C. Thornton, A. M. Keen, T. I. Preston, C. Norris, K. W. Edmonds, and C. Binns, Rev. Sci. Instrum. 68, 1853 (1997).

    Article  ADS  Google Scholar 

  28. S. H. Baker, S. C. Thornton, K. W. Edmonds, M. J. Maher, C. Norris, and C. Binns, Rev. Sci. Instrum. 71, 3178 (2000).

    Article  ADS  Google Scholar 

  29. H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners, and Y. Thurner, J. Vac. Sci. Technol. A 12, 2925 (1994).

    Article  ADS  Google Scholar 

  30. See: www.oareserch.co.uk and www.Mantisdeposition.com.

    Google Scholar 

  31. M. D. Upward, B. N. Cotier, P. Moriarty, P. H. Beton, S. H. Baker, C. Binns and Edmonds, J. Vac. Sci. Technol. B 18, 2646 (2000).

    Article  Google Scholar 

  32. J. Söderlund, L. B. Kiss, G. A. Niklasson, and C. G. Granqvist, Phys. Rev. Lett. 80, 2386 (1998).

    Article  ADS  Google Scholar 

  33. K. W. Edmonds, C. Binns, S. H. Baker, S. C. Thornton, and C. Norris, Phys. Rev. B 60, 472 (1999).

    Article  ADS  Google Scholar 

  34. C. Binns, M. J. Maher, Q. A. Pankhurst, D. Kechrakos, and K. N. Trohidou, Phys. Rev. B 66, 184413 (2002).

    Article  ADS  Google Scholar 

  35. Y. Qiang, R. F. Sabiryanov, S. S. Jaswal, Y. Liu, H. Haberland and D. J. Sellmyer, Phys. Rev. B 66, 064404 (2002).

    Article  ADS  Google Scholar 

  36. T. Hihara and K. Sumiyama, J. Appl. Phys. 84, 5270 (1998).

    Article  ADS  Google Scholar 

  37. D. L. Peng, K. Sumiyama, S. Yamamuro, T. Hihara, and T. J. Konno, Appl. Phys. Lett. 74, 76 (1999).

    Article  ADS  Google Scholar 

  38. D. L. Peng, K. Sumiyama, T. J. Konno, T. Hihara, S. Yamamuro, Phys. Rev. B 60, 2093 (1999).

    Article  ADS  Google Scholar 

  39. D. L. Peng, T. Hihara, K. Sumiyama, and H. Morikawa, J. Appl. Phys. 92, 3075 (2002).

    Article  ADS  Google Scholar 

  40. T. J. Konno, S. Yamamuro, and K. Sumiyama, J. Vac. Sci. Technol. B 20, 834 (2002).

    Article  Google Scholar 

  41. T. J. Konno, S. Yamamuro, and K. Sumiyama, J. Appl. Phys. 90, 834 (2001).

    Article  Google Scholar 

  42. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, in “Cohesion in Metals Transition Metal Alloys”, North-Holland, Amsterdam 1988.

    Google Scholar 

  43. Y. Xu, Z.G. Sun, Y. Qiang, and D.J. Sellmyer, J. Appl. Phys. 93, 8289 (2003).

    Article  ADS  Google Scholar 

  44. Y. Xu, Z.G. Sun, Y. Qiang, and D.J. Sellmyer, J. Magn. Magn. Mater. 266, 164 (2003).

    Article  ADS  Google Scholar 

  45. Y. Xu, M. L. Yan, J. Zhou, and D. J. Sellmyer, J. Appl. Phys. 97, 10J320 (2005).

    Google Scholar 

  46. B. Rellinghaus, S. Stappert, M. Acet, and E. F. Wassermann, J. Magn. Magn. Mater. 266, 142 (2003).

    Article  ADS  Google Scholar 

  47. S. Stappert, B. Rellinghaus, M. Acet, and E. F. Wassermann, J. Cryst. Grow. 252, 440 (2003).

    Article  ADS  Google Scholar 

  48. Y. Xu, M. L. Yan, and D. J. Sellmyer, IEEE Trans. Magn. 40, 2525 (2004).

    Article  ADS  Google Scholar 

  49. D. J. Sellmyer, C. P. Luo, M. L. Yan, and Y. Liu, IEEE Trans. Magn. 37, 1286 (2001).

    Article  ADS  Google Scholar 

  50. M. P. Sharrock, J. Appl. Phys. 76, 6413 (1994).

    Article  ADS  Google Scholar 

  51. Y. Xu, Z. S. Shan, J. P. Wang, and C. T. Chong, J. Magn. Magn. Mater. 232, 103 (2001).

    Article  ADS  Google Scholar 

  52. M. L. Yan, N. Powers, and D. J. Sellmyer, J. Appl. Phys. 93, 8292 (2003).

    Article  ADS  Google Scholar 

  53. H. Zeng, M. L. Yan, N. Powers, and D. J. Sellmyer, Appl. Phys. Lett. 80, 2350 (2002).

    Article  ADS  Google Scholar 

  54. M. L. Yan, H. Zeng, N. Powers, and D. J. Sellmyer, J. Appl. Phys. 91 8471 (2002).

    Article  ADS  Google Scholar 

  55. Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. 93, 8152 (2003).

    Article  ADS  Google Scholar 

  56. M. L. Yan, X. Z. Li, L. Gao, S. H. Liu, D. J. Sellmyer, R. J. M. van de Veerdonk, and K. W. Wierman, Appl. Phys. Lett. 83, 3332 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Xu, Y.F., Yan, M.L., Sellmyer, D.J. (2006). Cluster-Assembled Nanocomposites. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA. https://doi.org/10.1007/0-387-23316-4_8

Download citation

Publish with us

Policies and ethics