Skip to main content

Nanoscale Structural and Magnetic Characterization Using Electron Microscopy

  • Chapter
  • 2363 Accesses

Abstract

The transmission electron microscope (TEM) is a powerful instrument for structural, chemical and magnetic characterization at the nanoscale. Imaging, diffraction and microanalytical information can be combined with complementary micromagnetic information to provide a more thorough understanding of magnetic behavior. The first part of this chapter provides a brief overview of TEM operating modes that are suitable for examination of magnetic materials. The latter part provides examples that serve to illustrate the diverse range of materials that can be usefully studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. S. P. Parkin, Ann. Revs. Mater. Sci. 25, 357 (1995).

    Article  ADS  Google Scholar 

  2. S. S. P. Parkin, N. More, and K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990).

    Article  ADS  Google Scholar 

  3. D. J. Smith, Rep. Prog. Phys. 60, 1513 (1997).

    Article  ADS  Google Scholar 

  4. J. N. Chapman and M. R. Scheinfein, J. Magn. Magn. Mater. 200, 729 (1999).

    Article  ADS  Google Scholar 

  5. R. E. Dunin-Borkowski, M. R. McCartney, and D. J. Smith, in “Encyclopedia of Nanoscience and Nanotechnology”, Ed. H.S. Nalwa, American Scientific, Stevenson Ranch 2003, Volume X, Pp. 1–59.

    Google Scholar 

  6. C. L. Platt, A. E. Berkowitz, D. J. Smith and M. R. McCartney, J. Appl. Phys. 88, 2058 (2000).

    Article  ADS  Google Scholar 

  7. D. J. Smith, M. R. McCartney. C. L. Platt, and A. E. Berkowitz, J. Appl. Phys, 83, 5154 (1998).

    Article  ADS  Google Scholar 

  8. G. S. D. Beach, F. T. Parker, D. J. Smith, P. A. Crozier, and A. E. Berkowitz, Phys. Rev. Lett. 91, 267201 (2003).

    Article  ADS  Google Scholar 

  9. L. Gu, S. Wu, H.-X. Liu, R. Singh, N. Newman, and D. J. Smith, J. Magn. Magn. Mater. 291, 1395 (2005).

    Article  ADS  Google Scholar 

  10. M. R. McCartney, R. E. Dunin-Borkowski, M. R. Scheinfein, D. J. Smith, S. Gider, and S. S. P. Parkin, Science, 286, 1337 (1999).

    Article  Google Scholar 

  11. S. S. P. Parkin, Z. G. Li, and D. J. Smith, Appl. Phys. Lett. 58, 2910 (1991).

    Article  Google Scholar 

  12. D. J. Smith, A. R. Modak, T. Rabedeau, and S. S. P. Parkin, Appl. Phys. Lett. 71,1480 (1997).

    Article  ADS  Google Scholar 

  13. R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, D. J. Smith, and M. R. McCartney, J. Appl. Phys. 84, 934 (1998).

    Article  ADS  Google Scholar 

  14. S. S. P. Parkin, K.-S. Moon, K. E. Pettit, D. J. Smith, R. E. Dunin-Borkowski, and M. R. McCartney, Appl. Phys. Lett. 75, 543 (1999).

    Article  ADS  Google Scholar 

  15. H. Wang, M. R. McCartney, D. J. Smith, X. Jiang, R. Wang, S. van Dijken, and S. S. P. Parkin, J. Appl. Phys. 97, 104514 (2005).

    Article  ADS  Google Scholar 

  16. S. Sankar, A. E. Berkowitz, and D. J. Smith, Appl. Phys. Lett. 73, 535 (1998).

    Article  ADS  Google Scholar 

  17. S. Sankar, A. E. Berkowitz, and D. J. Smith, Phys. Rev. B 62, 14273 (2000).

    Article  ADS  Google Scholar 

  18. M. J. Hÿtch, R. E. Dunin-Borkowski, M. R. Scheinfein, J. Moulin, C. Duhamel, F. Mazaleyrat, and Y. Champion, Phys. Rev. Lett. 91, 257207 (2003).

    Article  ADS  Google Scholar 

  19. S.L. Tripp, R.E. Dunin-Borkowski, and A. Wei, Angew. Chem. Int. Ed. 42, 5591 (2003).

    Article  Google Scholar 

  20. R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, and D.J. Smith, J. Appl. Phys. 84, 374 (1998).

    Article  ADS  Google Scholar 

  21. R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, D.J. Smith, and M.R. Scheinfein, App;l. Phys. Lett. 75, 2641 (1999).

    Article  ADS  Google Scholar 

  22. J.G. Zhu, Y. Zheng, and G.A. Prinz, J. Appl. Phys. 87, 6668 (2000).

    Article  ADS  Google Scholar 

  23. H. Hu, H. Wang, M.R. McCartney, and D.J. Smith, J. Appl. Phys. 97, 054305 (2005).

    Article  ADS  Google Scholar 

  24. R.J. Harrison, R.E. Dunin-Borkowski, and A. Putnis, Proc. Nat. Acad. Sci (US) 99, 16556 (2002).

    Article  ADS  Google Scholar 

  25. R.E. Dunin-Borkowski, M.R. McCartney, R.B. Frankel, D.A. Bazylinski, M. Posfai, and P.R. Buseck, Science, 282, 1868 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Smith, D.J., McCartney, M.R., Dunin-Borkowski, R.E. (2006). Nanoscale Structural and Magnetic Characterization Using Electron Microscopy. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA. https://doi.org/10.1007/0-387-23316-4_5

Download citation

Publish with us

Policies and ethics