Skip to main content

Media for Extremely High Density Recording

  • Chapter
Advanced Magnetic Nanostructures

Abstract

The development and engineering of the magnetic material that stores information largely determines the progress of magnetic storage technology, as epitomized by magnetic hard disks. In this chapter, we consider the ultimate capability for the storage of digital information. Noise performance and spatial resolution are key parameters in recording media and an ongoing challenge in advancing the areal density. The dominant media noise source today is transition jitter noise, or the uncertainty in positioning neighboring bit transitions. In sputtered media, it reflects the finite size, random positioning and dispersions in size, orientation and magnetic properties of the fine grains that comprise the media. Highly anisotropic materials, combined with heat-assisted magnetic recording (HAMR), promise significant reductions in the average, thermally stable grain size from currently about 7–9 nm in Co-alloys to about 2–3 nm in FePt-based media. In addition, self-organized magnetic arrays (SOMA) promise a significant reduction in jitter noise, because they yield nearly monodisperse magnetic nanoparticles such as FePt and Co. SOMA media may serve not only as conventional media with reduced dispersions and media with bit-transitions defined by rows of particles, but may also be scaled to the ultimate goal of single-particle-per-bit recording. In this last scenario, the eventual areal density is governed by the minimal thermally stable size and by the center-to-center spacing of neighboring particles. Ultimately, subject to the mastering of all writability, signal retrieval, bit-addressability and spacing issues, areal densities of the order of 40–50 terabit per square inch may be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.R. Schaller, IEEE Spectrum 34(6), 52 (1997).

    Article  Google Scholar 

  2. M. Nieto, F. Lopez, and F. Cruz, Technovation 18(6–7), 439 (1998); CM. Christensen, Production and Operations Management 1(4), 334 (1992); “Part II: Architectural Technologies”, op.cit. 358 (1992).

    Article  Google Scholar 

  3. S. H. Charap, Pu Ling Lu, and Yanjun He, IEEE Trans. Magn. 33, 978 (1997).

    Article  ADS  Google Scholar 

  4. D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).

    Article  ADS  Google Scholar 

  5. M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, and D. Chen, IEEE Trans. Magn. 37, 1244 (2001).

    Article  ADS  Google Scholar 

  6. H. Sukeda, H. Saga, H. Nemoto, Y. Itou, C. Haginoya, and F. Matsumoto, IEEE Trans. Magn. 37, 1234 (2001).

    Article  ADS  Google Scholar 

  7. J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, and H. W. Kesteren, J. Appl. Phys. 87, 5398 (2000).

    Article  ADS  Google Scholar 

  8. H. J. Richter, “Dynamic Effects in High-Density Recording Media”, in: The Physics of Ultra-High-Density Magnetic Recording, Eds. Plumer, van Ek, Weller, Springer 2001, chapter 6.

    Google Scholar 

  9. JC. Mallinson, “The Foundations of Magnetic Recording”, 2nd edition, Academic Press, 1993.

    Google Scholar 

  10. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, (2000).

    Google Scholar 

  11. R. Wood, IEEE Trans. Magn. 36(1), 36 (2000).

    Article  ADS  Google Scholar 

  12. R. H. Victora, K. Senanan, and J. Xue, IEEE Trans. Magn. 38(5), 1886 (2002).

    Article  ADS  Google Scholar 

  13. M. Mallary, A. Torabi, and M. Benakli, IEEE Trans. Magn. 38(4), 1719 (2002).

    Article  ADS  Google Scholar 

  14. H. J. Richter and A. Yu. Dobin, J. Magn. Magn. Mater. 287, 41 (2005).

    Article  ADS  Google Scholar 

  15. K. Gao and H. N. Bertram, IEEE Trans. Magn. 38(6), 3675 (2002).

    Article  ADS  Google Scholar 

  16. Y. Y. Zou, J. P. Wang, C. H. Hee, and T. C. Chong, Appl. Phys. Lett. 82, 2473 (2003).

    Article  ADS  Google Scholar 

  17. M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005).

    Article  ADS  Google Scholar 

  18. D. Gurarisco, Y. Wu, P. Luo, B.E. Higgins, and K. Saito, J. Magn. Magn. Mater. 287, 459 (2005).

    Article  ADS  Google Scholar 

  19. Y. Tanaka, J. Magn. Magn. Mater. 287, 468 (2005).

    Article  ADS  Google Scholar 

  20. Zheng Zhang, Tolga M. Duman and Erozan M. Kurtas, “Information Theory of Magnetic Recording Channels,” Coding and Signal Processing for Magnetic Recording Systems, Eds. Bane Vasic and Erozan M. Kurtas, CRC Press, 2004, pp. 12.1–12.20.

    Google Scholar 

  21. In a micro-track model, σ ja (〈D〉/W read)1/2, where a is the transition-width parameter. In the limit of negligible exchange a ≈ 〈D〉, hence σ ja (〈D3/W read)1/2; see e.g. H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998).

    Article  ADS  Google Scholar 

  22. J. Ahner (unpublished data, 2004); J. Ahner et al. (to be published).

    Google Scholar 

  23. E. E. Fullerton, O. Hellwig, Y. Ikeda, B. Lengsfield, K. Takano, and J. B. Kortright, IEEE Trans. Magn. 38, 1693 (2002).

    Article  ADS  Google Scholar 

  24. D. Weller and M. F. Doerner, Ann Rev Mat Sci 30, 611 (2000).

    Article  ADS  Google Scholar 

  25. L. Néel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

  26. W. T. Coffey, D. S. F. Crothers, J. L. Dorman, L. J. Geoghegan, and E. C. Kennedy, Phys. Rev. B 58, 3249 (1998).

    Article  ADS  Google Scholar 

  27. W.F. Brown, Jr. Phys. Rev. 130, 1677 (1963).

    Article  ADS  Google Scholar 

  28. P. Gaunt, J. Appl. Phys. 78, 3470 (1977).

    Article  ADS  Google Scholar 

  29. E. C. Stoner and E. P. Wohlfarth, Trans. Roy. Soc. A240, 599 (1948).

    Article  MATH  ADS  Google Scholar 

  30. Hong Zhou (private communication): Demag = 8 arctan[kBWδ−1((Bk)2+W22)−1/2] ≈ 4π for realistic conditions (k≥8:max number of bits before head flux reversal, B=bitlength ≅ 40 nm @ 100 Gbit/in2, W=bit-width ≅ 140 nm @ 100 Gbit/in2, δ=medium thickness ≅10 nm.

    Google Scholar 

  31. A. Moser and D. Weller, “Thermal Effects in High Density Recording Media”, in The Physics of Ultra-High-Density Magnetic Recording, Eds. Plumer, van Ek, Weller, Springer 2001, chapter 5.

    Google Scholar 

  32. H. Zhou, H. N. Bertram, M. F. Doerner, and M. Mirzamaani, IEEE Trans. Magn. 35, 1239 (1999).

    Article  Google Scholar 

  33. H. N. Bertram, M. Marrow, J. Ohno, and J. K. Wolf, IEEE Trans. Magn. 40, 2311 (2004).

    Article  ADS  Google Scholar 

  34. H. J. Richter, “Dynamic Effects in High Density Recording Media”, “Dynamic Effects in High-Density Recording Media”, in The Physics of Ultra-High-Density Magnetic Recording, Eds. Plumer, van Ek, Weller, Springer 2001, chapter 6, page 201, eq. (6.24).

    Google Scholar 

  35. X.-W. Wu et al. J. Magn. Magn. Mater., to be published (2005)

    Google Scholar 

  36. T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, and W. A. Soffa, Scripta Met. Mater. 33, 1793 (1995).

    Article  Google Scholar 

  37. D. J. Sellmyer, J. Zhou, Y. Liu, and R. Skomski, “Magnetism of Sputtered Sm-Co-Based Thin Films”, in Rare Earth Magnets and Their Applications, Eds. G.C. Hadjipanayis and M.J. Bonder, Rinton Press 2002, p. 712.

    Google Scholar 

  38. K. J. Strnat, in “Ferromagnetic Materials”, Eds. E. P. Wohlfarth, K. H. J. Buschow, vol. 4, North-Holland, Amsterdam 1998, pp. 131–209 and references cited therein.

    Google Scholar 

  39. J. Sayama, K. Mizutani, T. Asahi, J. Ariake, K. Ouchi, S. Matsunuma, and T. Osaka, J. Magn. Magn. Mater. 287, 239 (2005).

    Article  ADS  Google Scholar 

  40. Y. Yamada, T. Suzuki, H. Kanazawa, and J.C. Österman, J. Appl. Phys. 85, 5094 (1999) and refs. therein.

    Article  ADS  Google Scholar 

  41. H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys. 38, 1839 (1999).

    Article  ADS  Google Scholar 

  42. H. Takano, Y. Nishida, A. Kuroda, H. Sawaguchi, T. Kawabe, A. Ishikawa, H. Aoi, H. Muraoka, Y. Nakamura, and K. Ouchi, “A practical approach for realizing high-recording density hard disk drives”, paper CA-01, MMM/Intermag 2001, San Antonio, TX, January 7–11.

    Google Scholar 

  43. T. W. McDaniel, W. A. Challener, and K. Sendur, IEEE Trans. Magn., 39, 1972 (2003).

    Article  ADS  Google Scholar 

  44. Z. Zhang, A. K. Singh, J. Yin, A. Perumal, and T. Suzuki, J. Magn. Magn. Mater. 287, 224 (2005).

    Article  ADS  Google Scholar 

  45. M. L. Yan, X. Z. Li, L. Gao, S. H. Liou, and D. J. Sellmyer, Appl. Phys. Lett. 83, 3332 (2003).

    Article  ADS  Google Scholar 

  46. J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002).

    Article  ADS  Google Scholar 

  47. J.-U. Thiele, S. Maat, and E. E. Fullerton, Appl. Phys. Lett. 82, 2859 (2003).

    Article  ADS  Google Scholar 

  48. J.-U. Thiele, S. Maat, J. Lee Robertson, and E. E. Fullerton, IEEE Trans. Magn. 40, 2537 (2004).

    Article  ADS  Google Scholar 

  49. G. Ju, J. Hohlfeld, B Bergman, R. J. M. van de Veerdonk, O. N. Mryasov, J.-Y. Kim, X. Wu, D. Weller, and B. Koopmans, Phys. Rev. Lett. 9, 197403 (2004).

    Article  ADS  Google Scholar 

  50. Y. Qiang, R. F. Sabirianov, S. S. Jaswal, H. Haberland, and D. J. Sellmyer, Phys. Rev. B 66, 064404 (2002).

    Article  ADS  Google Scholar 

  51. Y. Zhang, J. Wan, M. J. Bonder, G.C. Hadjipanayis, and D. Weller, J. Appl. Phys. 93, 7175 (2003).

    Article  ADS  Google Scholar 

  52. J. P. Wang and T. J. Zhou, Patterned Magnetic Nanostructures (invited chapter) in Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, in press.

    Google Scholar 

  53. J.-M. Qiu, J. H. Judy, D. Weller, and J.-P. Wang, J. Appl. Phys. 97, 10J319 (2005).

    Article  Google Scholar 

  54. R. H. Victora and Xiao Shen, “Exchange Coupled Composite media for Perpendicular Recording”, paper BB01, Intermag 2005, Nagoya, Japan (IEEE Trans. Magn. (2005) to be published).

    Google Scholar 

  55. D. Suess, T. Schrefl, M. Kirschner, G. Hrkac, and J. Fidler, “Optimization of Exchange Spring Perpendicular Recording Media”, paper GB07, Intermag 2005, Nagoya, Japan (IEEE Trans. Magn. (2005) to be published).

    Google Scholar 

  56. S. Sun, C. B. Murray, D. Weller, A. Moser, and L. Folks, Science 287, 1989 (2000).

    Article  ADS  Google Scholar 

  57. S. Sun, D. Weller, C. Murray, in “The Physics of Ultra-High-Density Magnetic Recording”, Eds. Plumer, van Ek, Weller, Springer 2001, Ch. 9.

    Google Scholar 

  58. B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38, R199 (2005).

    Article  ADS  Google Scholar 

  59. C. Liu, X. W. Wu, T. Klemmer, N. Shukla, X. M. Yang, D. Weller, A. Roy, M. Tanase, and D. E. Laughlin, J. Phys. Chem. B 108, 6121 (2004).

    Article  Google Scholar 

  60. R. Chantrell, D. Weller, T. Klemmer, E. Fullerton, and S. Sun, MMM Seattle, November 2001, J. Appl. Phys. (to be published).

    Google Scholar 

  61. T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Mater. 266, 79 (2003).

    Article  ADS  Google Scholar 

  62. H. Kodama, S. Momose, T. Sugimoto, T. Uzaumaki, and A. Tanaka, IEEE Trans. Magn. 41, 665 (2005).

    Article  ADS  Google Scholar 

  63. S. Kang, Z. Jia, D. Nikles, and J. W. Harrell, IEEE Trans. Magn. 39, 2753 (2003).

    Article  ADS  Google Scholar 

  64. S. Kang, Z. Jia, D. Nikles, and J. W. Harrell, J. Appl. Phys. 93, 7178 (2003).

    Article  ADS  Google Scholar 

  65. C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, and D. E. Laughlin, J. Appl. Phys. 92, 6104 (2002).

    Article  ADS  Google Scholar 

  66. S. Kang, Z. Jia, S. Shi, D.E. Nikles, J.W. Harrell, Appl. Phys. Lett. 86, 062503 (2005).

    Article  ADS  Google Scholar 

  67. S. Kang, Z. Jia, D. E. Nikles, J.W. Harrell, J. Appl. Phys. 97, 10J318 (2005).

    Article  Google Scholar 

  68. Z. L. Wang, J. Phys. Chem. B 104, 1153 (2000).

    Article  Google Scholar 

  69. H. Zeng, P. M. Rice, S. X. Wang, and S. Sun, J. Am. Chem. Soc. 126, 11458 (2004).

    Article  Google Scholar 

  70. M. Tanase et al. (to be published)

    Google Scholar 

  71. p = pmax [1/(1+21/D)]2, with the maximum packing (l) = 0 nm) pmax= 1 for cubes, pmax = π/4 = 0.785 for cylinders and pmax = π/6 = 0.524 for spheres. D = particle core diameter, l = surfactant molecule chain length with 21 = w.

    Google Scholar 

  72. Y. K. Takahashi, T. Ohkubo, M. Ohnuma, and K. Hono, J. Appl. Phys. 93, 7166 (2003).

    Article  ADS  Google Scholar 

  73. B. Yang, M. Asta, O. N. Mryasov, T. Klemmer, and R. W. Chantrell, Acta Metallurgica, (accepted for publication, 2005).

    Google Scholar 

  74. K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, IEEE Trans. Magn. 38, 1949 (2002).

    Article  ADS  Google Scholar 

  75. J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, R. G. H. Lammertink, and G. J. Vancso, IEEE Trans. Magn. 38, 2541 (2002).

    Article  ADS  Google Scholar 

  76. X. M. Yang, C. Liu, J. Ahner, J. Yu, T. Klemmer, E. C. Johns, and D. Weller, J. Vac. Sci and Tech. B 22, 31 (2004).

    Article  Google Scholar 

  77. A. Lyberatos and K. Yu. Guslienko, J. Appl. Phys. 94, 1119 (2003).

    Article  ADS  Google Scholar 

  78. A. Lyberatos and J. Hohlfeld, J. Appl. Phys. 95, 1949 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Weller, D., McDaniel, T. (2006). Media for Extremely High Density Recording. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA. https://doi.org/10.1007/0-387-23316-4_11

Download citation

Publish with us

Policies and ethics