Skip to main content

FIB for Materials Science Applications - a Review

  • Chapter
Book cover Introduction to Focused Ion Beams

Abstract

The application of focused ion beam techniques to a range of topics in materials science is reviewed. Recent examples in the literature are cited along with illustrations of numerous applications. Potential artifacts that can arise are discussed along with commentary on minimizing their impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DP, Vasile MJ, Benavides G, and Campbell AN, “Micromilling of metal alloys with focused ion beam-fabricated tools”. J. International Societies for Precision Engineering and Nanotechnology 25, 107–113 (2001).

    Google Scholar 

  • Benninghoven A, Crit. Rev. Solid State Sci., 6, 291 (1976).

    Article  Google Scholar 

  • Botton GA, and Phaneuf MW, “Imaging, spectroscopy and spectroscopic imaging with an energy filtered field emission TEM”, Micron 30, 109–119 (1999).

    Article  Google Scholar 

  • Burke MG, Duda PT, Botton G, and Phaneuf MW, “Assesment of deformation using the focused ion beam technique,” Microsc. Microanal. 6 (Suppl2:Proc.), 530–531 (2000).

    Google Scholar 

  • Cairney JM, Munroe PR, and Schneibel JH, “Examination of fracture surfaces using focused ion beam milling.” Scripta Materialia 42, 473–478 (2000).

    Article  Google Scholar 

  • Cairney JM, Munroe PR, and Sordelet DJ, “Microstructural analysis of a FeAl/quasicrystal-based composite prepared using a focused ion beam miller.” J. Microscopy 201, 201–211. (2001).

    Article  MathSciNet  Google Scholar 

  • Cairney JM, Smith RD, and Munroe PR, Transmission electron microscope specimen preparation of metal matrix composites using the focused ion beam miller. Microsc. Microanal. 6 (Suppl 2:Proc.), 452–462 (2000).

    ADS  Google Scholar 

  • Chaiwan, S., Stiefel, U., Hoffman, M., and Munroe, P., “Investigation of sub-surface damage during dry wear of alumina using focused ion beam milling.” J. Australasian Ceramic Society 36, 77–81 (2000).

    Google Scholar 

  • Cleaver JRA and Ahmed H, “A 100kV ion probe microfabrication system with a tetrode gun.” J. Vac. Sci. Technol., 19(4), 1145–1148 (1981).

    Article  ADS  Google Scholar 

  • Davis RB, “Preparation of samples for mechanical property testing using the FIB workstation”. Microstr. Sci., 25, 511–515 (1997).

    Google Scholar 

  • Dravid VP, “Focused ion beam (FIB): More than just a fancy ion bean thinner.” Microsc. Microanal. 7 (Suppl 2:Proceedings), 926–927 (2001).

    Google Scholar 

  • Evans RD, Phaneuf MW, Boyd JD, “Imaging damage evolution in a small particle metal matrix composite,” J. Microsc. 196(2), 146–154 (1999).

    Article  Google Scholar 

  • Engqvist H, Botton GA, Ederyd S, Phaneuf M, Fondelius J, Axen N, Wear phenomenat on WC-based face seal rings, Intl. J. Refract. Metals & Hard Matls 18, 39–46 (2000).

    Article  Google Scholar 

  • Franklin RE, Kirk ECG, Cleaver JRA, Ahmed H, “Channelling ion image contrast and sputtering in gold specimens observed in a high-resolution scanning ion microscope”, J. Mat. Sci. Letters, 7, 39–41 (1988).

    Article  Google Scholar 

  • Garnacho E, Walker JF, Robinson K, and Pugh P, “Cuticular copper accumulation in Praunus flexuosus: location via a gallium SIMS on a FIB platform”. Microscopy and Analysis 76,76, 9–15 (2000).

    Google Scholar 

  • Giannuzzi LA, Drown JL, Brown SR, Irwin RB, and Stevie FA, “Focused ion beam milling and micromanipulation lift-out for site specific cross-section TEM specimen preparation.” Mat. Res. Soc. Symp. Proc. “Workshop on Specimen Preparation for TEM and Materials IV”. R. Anderson (Ed.) (1997).

    Google Scholar 

  • Giannuzzi LA, Drown JL, Brown SR, Irwin RB, and Stevie F, “Applications of the FIB Lift-Out Technique for TEM Specimen Preparation”. Micr. Res. Tech. 41 285–290 (1998).

    Article  Google Scholar 

  • Gianuzzi LA, White HJ, Chen WC, “Application of the FIB lift-out technique for the TEM of cold worked fracture surfaces”, Microsc. Microanal. 7 (Suppl 2:Proc.), 942–943 (2001).

    Google Scholar 

  • Gianuzzi LA, Prenizer BI, Drown-MacDonald JL, Shofner TL, Brown SR, Irwin RB, and Stevie FA, “Electron microscopy sample preparation for the biological and physical sciences using focused ion beams”, J. Proc. Analyt. Chem IV, No. 3,4, 162–167 (1999).

    Google Scholar 

  • Heaney PJ, Vicenzi EP, Giannuzzi LA, and Livi KJT, “Focused ion beam milling: A method of site specific sample extraction for microanalysis of Earth and planetary materials”. American Mineralogist 86, 1094–1099 (2001).

    Article  ADS  Google Scholar 

  • Hoshi K, Ejiri S, Probst W, Seybold V, Kamino T, Yaguchi T, Yamahira N, and Ozawa H, “Observation of human dentine by focused ion beam and energy filtering transmission electron microscopy”, J. Microscopy 201, 44–49 (2001).

    Article  MathSciNet  Google Scholar 

  • Hull R, Dunn D, and Kubis “A Nanoscale tomographic imaging using focused ion beam sputtering secondary electron imaging and secondary ion mass spectrometry” Microsc. Microanal. 7 (Suppl 2:Proceedings), 934–935 (2001).

    Google Scholar 

  • Inkson BJ, Mulvihill M, and Mobus G. “3D determination of grain shape in a FeAL-based nanocomposite by 3D FIB tomography”. Scripta Materialia 45, 753–758 (2001).

    Article  Google Scholar 

  • Inkson B.J., Steer, T., Mobus, G., and Wagner, T., 2001. Subsurface nanoindentation deformation of Cu-Al multilayers mapped in 3D by focused ion beam microscopy. J. Microscopy 201, 256–269.

    Article  MathSciNet  Google Scholar 

  • Ishitani, T, Hirose H, and Tsuboi H, “Focused-ion-beam digging of biological specimens.” J. Electron Microsc., 44, 110–114 (1995).

    Google Scholar 

  • Ishitani T, Taniguchi Y, Isakozawa S, and Koike H, “Proposals for exact-point transmission-electron microscopy using focused ion beam specimen-preparation technique”. J. Vac. Sci. Technol. B 16(4), 2532–2537 (1998).

    Article  Google Scholar 

  • Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA, Irwin RB, and Stevie FA, “Ion channeling effects on the focused ion beam milling of Cu”. J. Vac. Sci. Technol. B 19(3), 749–754 (2001).

    Article  Google Scholar 

  • Kim ST, and Dravid VP, “Focused ion beam sample preparation of continuous fibre-reinforced ceramic composite specimens for transmission electron microscopy”. J. Microscopy 199, 124–133 (2000).

    Article  Google Scholar 

  • Kirk ECG, Cleaver JRA and Ahmed J, “In situ microsectioning and imaging of semiconductor devices using a scanning ion microscope”. Inst. Phys. Conf. 87(11), 691–693 (1987).

    Google Scholar 

  • Kitano Y, Fujikawa Y, Kamino T, Yaguchi T and Saka H, “TEM observation of micrometer-sized Ni powder particles thinned by FIB cutting technique”. J. Electron Microsc., 44, 410–413 (1995).

    Google Scholar 

  • Kitano Y, Fujikawa Y, Takeshita H, Kamino T, Yaguchi T, Matsumoto H, and Koike H. “TEM Observation of Mechanically Alloyed Powder Particles (MAPP) of Mg-Zn Alloy Thinned by the FIB Cutting Technique”, J. Electron Microsc. 44, 376–383 (1995).

    Google Scholar 

  • Kitano Y, Fujikawa Y, Kamino T, Yaguchi T, and Saka H, “TEM Observation of Micrometer-Sized Ni PowderParticles Thinned by FIB Cutting Technique”. J. Electron Microsc. 44, 410–413 (1995).

    Google Scholar 

  • Kitano Y, Fujikawa Y, Takeshita H, Kamino T, Yaguchi T, Matsumoto H, and Koike H, “TEM observation of micrometer-sized Ni powder particles thinned by FIB cutting technique”. J. Electron Microsc., 44, 376–383 (1995).

    Google Scholar 

  • Kuroda K, Takahashi M, Kato T, Saka H, and Tsuji S, “Application of focused ion beam milling to cross-sectional TEM specimen preparation of industrial materials including heterointerfaces”, Thin Solid Films, 319 92–96 (1998).

    Article  ADS  Google Scholar 

  • Levi-Setti R, Fox T, Lam K, “Ion channeling effects in scanning ion microscopy with a 60 keV Ga+ probe”, Nucl. Instrum. Methods., 205, 299–309 (1983).

    Article  Google Scholar 

  • Levi-Setti R, Crow G, and Wang YL, “Progress in high resolution scanning ion microscopy and secondary ion mass spectrometry imaging microanalysis”. Sc. El. Micr. 535–551 (1985).

    Google Scholar 

  • Levi-Setti R, Crow G, Wang YL, “Scanning ion microscopy: Elemental maps at high lateral resolution,” Applied Surface Science. 26 249–264 (1986).

    Article  ADS  Google Scholar 

  • Lomness JK, Giannuzzi LA, and Hampton MD, “Site-specific transmission electron microscope characterization of micrometer-sized particles using the focused ion beam lift-out technique”, Microsc. Microanal. 7, 418–423 (2001).

    Article  ADS  Google Scholar 

  • Longo DM, Howe JM, and Johnson WC, “Development of a focused ion beam (FIB) technique to minimize X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) of FIB specimens in the transmission electron microscope (TEM)”, Ultramicroscopy 80, 69–84 (1999).

    Article  Google Scholar 

  • Longo DM, Howe JM, and Johnson WC, “Experimental method for determining Cliff-Lorimer Factors in transmission electron microscopy (TEM) utilizing stepped wedge-shaped specimens prepared by focused ion beam (FIB) thinning”, Ultramicroscopy 80, 85–97 (1999).

    Article  Google Scholar 

  • Malis T, Carpenter GJC, Botton GA, Dionne S and Phaneuf MW, “Contributions of microscopy to advanced industrial materials and processing, In Industrial Electron Microscopy”, Zhigang R. Li, (Ed.), Marcel Dekker Inc. (In press) (2002).

    Google Scholar 

  • Melngailis J, “Critical Review: Focused ion beam technologies and applications”, J. Vac. Sci. Technol., B. 5(2), 469–495 (1987).

    Article  Google Scholar 

  • Miyagawa H, Chiou W-A, Daniel IM, “TEM sample preparation of polymer based nanocomposites using focused ion beam technique”, Microsc. Microanal. 7 (Suppl 2: Proceedings), 946–947 (2001).

    Google Scholar 

  • More KL, Coffey DW. Pint BA, Trent KS and Tororelli PF, “TEM specimen preparation of oxidized Ni-base alloy using the focused ion beam (FIB) technique”, Microsc. Microanal. 6 (Suppl 2:Proceedings), 540–541 (2000).

    Google Scholar 

  • Muroga A and Saka H, “Analysis of rolling contact fatigued microstructure using focused ion beam sputtering and transmission electron microscopy observation”, Scripta Met. et Mater., 33, 151–156 (1995).

    Article  Google Scholar 

  • Park CM, and Bain JA, “Focused-ion-beam induced grain growth in magnetic materials for recording heads”, J. Applied Physics 91, 6380–6832 (2002).

    ADS  Google Scholar 

  • Phaneuf MW, Rowlands N, Carpenter GJC and Sundaram G, “Focused ion beam sample preparation of non-semiconductor materials”, In: Mat. Res. Soc. Symp., 480, Anderson, R. (Ed.), MRS Pittsburgh, pp. 39–48 (1997).

    Google Scholar 

  • Phaneuf MW, “Applications of focused ion beam microscopy to materials science specimens”, Micron 30, 277–288 (1999).

    Article  Google Scholar 

  • Phaneuf MW, and Li J, “FIB Techniques for Analysis of Metallurgical Specimens”, Microsc. Microanal. 6 (Suppl 2:Proceedings), 524–525 (2000).

    Google Scholar 

  • Phaneuf, M.W. Li, J. Shuman, R.F., Noll, K., and Casey Jr., J.D. U.S. Patent Application 20010053605 (March 2000).

    Google Scholar 

  • Phaneuf MW and Botton G, “Analysis of degradation in nickel-based alloys using focused ion beam imaging and specimen preparation combined with analytical electron microscopy.” To be published in Proceedings of FONTEVRAUD 5: Contribution of Materials Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors (2002).

    Google Scholar 

  • Phaneuf MW, Li J and Casey Jr JD, “Gallium phase formation in Cu and other FCC metals during near-normal incidence Ga-FIB milling and techniques to avoid this phenomenon,” Microsc. Microanal. 8 (Suppl 2:Proceedings), In Press (2002).

    Google Scholar 

  • Phaneuf MW, Carpenter GJC, Saimoto S, McMahon GS, “A study of anomalous Ga phase formation during near normal incidence FIB milling of Cu”. In Preparation (2002).

    Google Scholar 

  • Phillips JR, Griffis DP, and Russell PE, “Channeling effects during focused-ion-beam micromachining of copper”, J. Vac. Sci. Technol. 18(4), 1061–1065 (2000).

    Article  ADS  Google Scholar 

  • Prenitzer BI, Giannuzzi LA, Newman K, Brown SR, Irwin RB, Shofner TL, and Stevie FA, “Transmission electron microscope specimen preparation of Zn powders using the focused ion beam lift-out technique”, Metallurgy and Materials 29, 2399–2406 (1998).

    Google Scholar 

  • Saka H, Kato T, Hong MK, Sasaki K and Kamino T, “Cross-sectional TEM observation of interfaces in a galvannealed steel”, Galvatech’ 95: Proceedings of the Third International Conference on Zinc and Zinc Alloy Coated Steel Sheet., 809–814 (1995).

    Google Scholar 

  • Saka H, and Abe S, “FIB/HVEM observation of the configuration of cracks and the defect structure near the cracks”, Japanese Society of Electron Microscopy. 1 45–57 (1997).

    Article  Google Scholar 

  • Saka H and Abe S, “Plan-view observation of crack tips by focused ion beam/transmission electron microscopy”, Materials Science Engineering. A, (234–236), 552–554 (1997).

    Article  Google Scholar 

  • Sakamoto T, Cheng Z, Takahashi M, Owari M, and Nihei Y, “Development of an ion and electron dual focused beam apparatus for three-dimensional microanalysis”, Japanese J. Applied Physics 37, 2051–2056 (1998).

    Article  ADS  Google Scholar 

  • Smith AJ, Munroe PR, Tran T, and Wainwright MS, “FIB preparation of a sensitive porous catalyst for TEM elemental mapping at high magnifications”, J. of Materials Science 36, 3519–3524 (2001).

    Article  ADS  Google Scholar 

  • Tomiyasu B, Fukuju I, Komatsubara H, Owari M, and Nihei Y, “High spatial resolution 3D analysis of materials using gallium focused ion beam secondary ion mass spectrometry (FIB SIMS)”, Nucl. Instr. and Meth in Phys. Res. B 136–138, 1028–1033 (1998).

    Article  Google Scholar 

  • Trtik P, Reeves CM, and Bartos PJM, “Use of focused ion beam (FIB) for advanced interpretion of microindentation test results applied to cementitious composites”, Materials and Structures, 33, 189–193 (2000).

    Article  Google Scholar 

  • Vasile MJ. Nassar R, Xie J, and Guo H, “Microfabrication techniques using focused ion beams and emergent applications”, Micron 30, 235–244 (1999).

    Article  Google Scholar 

  • Wang YZ, Revie W, Phaneuf MW and Li J, “Application of focused ion beam (FIB) microscopy to the study of crack profiles”, Fatig. Fract. Eng. Mater. Struct. 22, 251–256 (1999).

    Article  Google Scholar 

  • White H, Pu Y, Rafailovich M, Sokolov J, King AH, Giannuzzi LA, Urbanik-Shannon C, Kempshall BW, Eisenberg A, Schwarz SA, and Strzhemechny YM, “Focused ion beam/lift-out transmission electron microscopy cross sections of block copolymer films ordered on silicon substrates”, Polymer 42, 1613–1619 (2000).

    Article  Google Scholar 

  • Xu S, Bouchard R, Li J, Phaneuf MW, Tyson WR, “Identification of cleavage origins using focused ion beam (FIB) sectioning”, Microsc. Microanal. 8 (Suppl 2:Proceedings), In Press (2002).

    Google Scholar 

  • Yaguchi T, Kamino T, Ishitani T, and Urao R, “Method for Cross-sectional Transmission Electron Microscopy Specimen Preparation of Composite Materials Using a Dedicated Focused Ion Beam System”, Microsc. Microanal 5, 365–370 (1999).

    Article  ADS  Google Scholar 

  • Yaguchi T, Kamino T, Sasaki M, Barbezat G, and Urao R, “Cross-sectional specimen preparation and observation of a plasma sprayed coating using a focused ion beam / transmission electron microscopy system”, Microscopy and Microanalysis 6, 218–223 (2000).

    ADS  Google Scholar 

  • Yaguchi T. Matsumoto H, Kamino T, Ishitani T, and Urao R, “Method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam system and intermediate voltage electron microscope and its application to the characterization of a precipitate in a steel”, Microscopy and Microanalysis 7, 287–291 (2000).

    Article  ADS  Google Scholar 

  • Young R J, “Application of the focused ion beam in materials characterization and failure analysis”, Microstructural Science., 25, 491–496 (1997).

    Google Scholar 

  • Young RJ, “Automation of Focused Ion Beam (FIB) Preparation”, Microscopy and. Microanalysis. 6 (Suppl 2:Proceedings), 512–513 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Phaneuf, M.W. (2005). FIB for Materials Science Applications - a Review. In: Giannuzzi, L.A., Stevie, F.A. (eds) Introduction to Focused Ion Beams. Springer, Boston, MA. https://doi.org/10.1007/0-387-23313-X_8

Download citation

Publish with us

Policies and ethics