Skip to main content

Spectrally Resolved Two-Colour Femtosecond Photon Echoes

  • Chapter
Femtosecond Laser Spectroscopy

Abstract

We describe a potentially powerful multidimensional technique based on spectrally resolved 2-colour 3-pulse photon echoes in the visible region for probing vibrational and electronic dynamics in complex molecular systems on a femtosecond time scale. Recording of the spectrum of the photon echo signals yields detailed information about the temporal evolution of the amplitude of the nonlinear polarization induced in the sample by the three temporally separated femtosecond laser pulses. Suitable selection of the wavelengths of the three laser pulses allows different sets of energy levels to be selected and the dynamics of the ground and excited states to be separated and investigated. The technique is applied to studies of dynamical processes in a wide range of molecular systems, including the dye molecules Rhodamine 101, Rhodamine B and cresyl violet; the blue emitting semiconductor gallium nitride; semiconductor CdTe/ZnSe quantum dots; and the biomolecules myoglobin and carbonmonoxy myoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., A.H. Zewail, Femtochemistry — Ultrafast Dynamics of the Chemical Bond, Vols. I, II (World Scientific, Singapore, 1994).

    Google Scholar 

  2. See, e.g., R.R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987).

    Google Scholar 

  3. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).

    Google Scholar 

  4. S. Mukamel, A. Piryatinski and V. Chernyak, Acc. Chem. Res. 32, 145 (1999).

    Article  Google Scholar 

  5. S. Mukamel, Ann. Rev. Phys. Chem. 51, 691 (2000).

    Article  ADS  Google Scholar 

  6. R. Agarwal, B.S. Prall, A.H. Rizvi, M. Yang and G.R. Fleming, J. Chem. Phys. 116, 6243 (2002), and references therein.

    Article  ADS  Google Scholar 

  7. W.P. de Boeij, M.S. Pshenichnikov and D.A. Wiersma, Chem. Phys. 233, 287 (1998).

    Article  Google Scholar 

  8. J.D. Hybl, A.A. Ferro and D.M. Jonas, J. Chem. Phys. 115, 6606 (2001).

    Article  ADS  Google Scholar 

  9. M.C. Asplund, M. Lim and R.M. Hochstrasser, Chem. Phys. Lett. 323, 269 (2000).

    Article  ADS  Google Scholar 

  10. D.E. Thompson, K.A. Merchant and M.D. Fayer, J. Chem. Phys. 115, 317 (2001).

    Article  ADS  Google Scholar 

  11. C. Scheurer and S. Mukamel, J. Chem. Phys. 115, 4989 (2001).

    Article  ADS  Google Scholar 

  12. L.D. Book, A.E. Ostafin, N. Ponomarenko, J.R. Norris and N.F. Scherer, J. Phys. Chem. B 104, 8295 (2000).

    Article  Google Scholar 

  13. L.V. Dao, C. Lincoln, M. Lowe and P. Hannaford, Physica B 327, 123 (2003).

    Article  ADS  Google Scholar 

  14. L.V. Dao, C. Lincoln, M. Lowe and P. Hannaford, J. Chem. Phys. 120, 8434 (2004).

    Article  ADS  Google Scholar 

  15. W. Zinth and W. Kaiser, In Topics in Applied Physics, Vol. 60 (Springer-Verlag, Heidelberg, 1988), p 235.

    Google Scholar 

  16. See, e.g., J.. Fourkas, Ann. Rev. Phys. Chem. 53, 17 (2002).

    Article  ADS  Google Scholar 

  17. A.W. Albrecht, J.D. Hybl, S.M. Sarah, S.M.G. Feader and D.M. Jonas, J. Chem. Phys. 111, 10934(1999).

    Article  ADS  Google Scholar 

  18. Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).

    Google Scholar 

  19. S.M.G. Feader and D.M. Jonas, J. Phys. Chem. A 103, 10489 (1999).

    Article  Google Scholar 

  20. J. Erland, V.G. Lyssenko and J.M. Hvam, Phys. Rev. B 63, 155317 (2001).

    Article  ADS  Google Scholar 

  21. C. Crepin, Phys. Rev. A 67, 013401 (2003).

    Article  ADS  Google Scholar 

  22. See, e.g., J.B. Asbury, T. Steinel and M.D. Fayer, Chapter 7 of this volume.

    Google Scholar 

  23. J.D. Hybl, A.W. Albrecht, S.M.G. Feader and D.M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

    Article  ADS  Google Scholar 

  24. J.M. Shacklette and S.T. Cundiff, Phys. Rev. B 66, 045309 (2002).

    Article  ADS  Google Scholar 

  25. M. Bellini, Chapter 2 of this volume.

    Google Scholar 

  26. X. Gu, S. Akturk, A. Shreenath, Q. Cao and R. Trebino, Chapter 3 of this volume.

    Google Scholar 

  27. M. Aizengendler and A. Stanco, Lastek Laboratories, Thebarton, Australia, personal communication.

    Google Scholar 

  28. L.V. Dao, C.N. Lincoln, R.M. Lowe and P. Hannaford, In Laser Spectroscopy (Eds. P. Hannaford, A. Sidorov, H. Bachor and K. Baldwin, World Scientific, 2004), p 96.

    Google Scholar 

  29. E. Vogel, A. Gbureck and W. Kiefer, J. Molecular Structure 550-551, 177 (2000).

    Article  ADS  Google Scholar 

  30. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, New York, 1997).

    Google Scholar 

  31. L.V. Dao, M. Lowe and P. Hannaford, J. Phys. B 36, 1719 (2003).

    Article  ADS  Google Scholar 

  32. T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).

    Article  ADS  Google Scholar 

  33. E.R. Glaser et al., Phys. Rev. B 51, 13326 (1995).

    Article  ADS  Google Scholar 

  34. L.V. Dao, M. Lowe, P. Hannaford, H. Makino, T. Takai and T. Yao, Appl. Phys. Lett. 81, 1806 (2002).

    Article  ADS  Google Scholar 

  35. L.V. Dao, M. Lowe, P. Hannaford, H. Makino, T. Takai and T. Yao, Int. J. Nanoscience (in press).

    Google Scholar 

  36. C.N. Lincoln, PhD Thesis, Swinburne University of Technology (in preparation).

    Google Scholar 

  37. F. Rosca, A.T.N. Kumar, X. Ye, T. Sjodin, A.A. Demitov and P.M. Champion, J. Phys. Chem. A 104, 4280 (2000).

    Article  Google Scholar 

  38. S. Franzen, L. Kiger, C. Poyard and J-L. Martin, Biophys. J. 80, 2372 (2001).

    Article  Google Scholar 

  39. T. Ritz, A. Damjanovic, K. Schulten, J-P. Zhang and Y. Koyama, Photosynthesis Research 66, 125 (2000).

    Article  ISI  Google Scholar 

  40. N. Lokan, M.N. Paddon-Row, T.A. Smith, M.L. Rosa and K.P. Ghiggino, J. Am. Chem. Soc. 121, 2917 (1999).

    Article  Google Scholar 

  41. G.D. Scholes, D.S. Larson, G.R. Fleming, G. Rumbles and P.L. Burn, Phys. Rev. B 61, 13670 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

van Dao, L., Lincoln, C., Lowe, M., Hannaford, P. (2005). Spectrally Resolved Two-Colour Femtosecond Photon Echoes. In: Hannaford, P. (eds) Femtosecond Laser Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-23294-X_8

Download citation

Publish with us

Policies and ethics