Skip to main content

Evolution of Microstructure Depending on Deformations

  • Chapter
  • 2777 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindgren L-E. Finite element modeling and simulation of welding Part I Increased complexity, J of Thermal Stresses 24, pp 141–192, 2001

    Article  Google Scholar 

  2. Goldak J. A. Modeling thermal stresses and distortions in welds, Recent Trends in Welding Research, Ed. David S.A. and Vitek J, (Materials Park, OH, ASM), pp 71–82, 1990

    Google Scholar 

  3. McDill JMJ, Oddy AS, Goldak JA and Bennisson S. Finite element analysis of weld distortion in carbon and stainless steels, Journal of Strain Analysis for Engineering Design, Vol. 25, No. 1, pp 51–53, 1990

    Google Scholar 

  4. Ueda Y. and Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method, JWRI, Vol. 2, No. 2, pp 90–100, 1971

    Google Scholar 

  5. Goldak J.A., Oddy A., Gu M., Ma W., Mashaie A and Hughes E. Coupling heat transfer, microstructure evolution and thermal stress analysis in weld mechanics, IUTAM Symposium, Mechanical Effects of Welding, June 10–14, Lulea Sweden, 1991

    Google Scholar 

  6. Gu M. and Goldak J.A. Steady state formulation for stress and distortion of welds, J of Eng. For Industry, Vol. 116, pp 467–474, Nov. 1994

    Google Scholar 

  7. Goldak J.A., Breiguine V., Dai N., Hughes E. and Zhou J. Thermal Stress Analysis in Solids Near the Liquid Region in Welds. Mathematical Modeling of Weld Phenomena, 3 Ed. By Cerjak H., The Institute of Materials, pp 543–570, 1997

    Google Scholar 

  8. Hirt C. W., Amsden A. A. and Cook J. L. An arbitrary Lan-grangian-Eulerian computing method for all flow speeds,” Journal Computational Phys., Vol. 14, No.3, pp 227–253, 1974

    Article  MATH  Google Scholar 

  9. Donea J. Arbitrary Lagrangian-Eulerian finite element methods, computational methods for transient analysis, T. Belystschko T. and Hughes T.J.R., eds., Computational Methods in Mechanics, Vol. 1, Elsevier Science Publishers B. V., pp 473–516, 1983

    Google Scholar 

  10. Haber R. B. A mixed Eulerian-Lagrangian displacement model for urge-deformation analysis in solid mechanics, Computer Methods in Applied Mechanics and Engineering, Vol. 43, pp 277–292, 1984

    Article  MATH  Google Scholar 

  11. Koh H. M. and Haber R. B. “Elasto dynamic formulation of the Eulerian-Lagrangian kinematic description,” ASME Journal of Applied Mechanics, Vol. 53, No. 12, pp 839–845, 1986

    Article  MATH  Google Scholar 

  12. Ghosh, S. and Kikuchi N. An arbitrary Lagrangian-Eulerian finite element for urge deformation analysis of elastic-visco-plastic solids,” Computer Methods in Applied Mechanics and Engineering, Vol. 86, pp 127–188, 1991

    Article  MATH  Google Scholar 

  13. Paul R. and Dawson: On modeling of mechanical property changes during flat rolling of aluminum, Int. in Solids Structures, Vol. 23, No. 7, pp 947–968, 1987

    Article  Google Scholar 

  14. Bergheau J. M., Pont D. and Leblond J. B. Three-dimensional simulation of a laser surface treatment through steady statc computation in the heat source’s commoving frame, Mechanical Effects of Welding, IUTAM Symposium, Lulea Sweden, June 1991

    Google Scholar 

  15. Kojic M. and Bathe K.-J. The Effective-Stress-Function algorithm for thermoelastic-plasticity and creep, Int. Num. Math. Engineering, Vol. 24, pp 1509–1532, 1987.

    Article  MATH  Google Scholar 

  16. Bathe, K. J., Kojic M. and Walczak J. Some developments in methods for large strain elasto-plastic analysis, computational plasticity models software and applications I, D. R. J., Owen et al., eds., Pineridge Press, Swansea U. K., pp 263–279.

    Google Scholar 

  17. Oddy AS, Goldak JA and McDill JMJ. Transformation effects in the 3D finite element analysis of welds,” in David S. A. and Viterk J.M. eds., Recent Trends in Welding Science and Technology TWR’ 89, ASM International, Materials Park OH, pp 97–101, 1989

    Google Scholar 

  18. Hughes T.J.R. Numerical implementation of constitutive models: rate independent deviatoric plasticity, Proceedings of the Workshop on the Theoretical Foundation for Large-Scale Computations of Nonlinear Material Behavior, Northwestern Univ, Evanston IL, Oct. 24, 1983

    Google Scholar 

  19. Belytschko T. and Hughes T. Computational analysis for transient analysis, Vol. I, Computational Methods in Mechanics, North-Holland New York USA, pp 22–37, 1983.

    MATH  Google Scholar 

  20. Dienes J. K. On the analysis of rotation and stress rate in deforming bodies, ACTA Mechanic, Vol. 32, pp 217–232, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hill R. Aspects of invariance in solids mechanics, Advances in Applied Mechanics, Vol. 18, Academic Press, New York USA, pp 1–75, 1978.

    Google Scholar 

  22. Malvern L.E. Introduction in the mechanics of a continuous medium, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1969

    Google Scholar 

  23. Gurtin, M. E., An introduction in continuum mechanics, Academic Press, New York.

    Google Scholar 

  24. Hoger, A., Carlson, D.E. Determination of the stretch and rotation in the polar decomposition of the deformation gradient, Quart. of Appl. Math., Brown University, pp 113–117, April 1984

    Google Scholar 

  25. Gu M. (1992). Computational weld analysis for long welds. Doctoral thesis Carleton University.

    Google Scholar 

  26. Masubuchi, K. Analysis of welded structures, N. Y., Pergamon Press, pp 119–120, 1980

    Google Scholar 

  27. Oddy, A.S, McDill, JMJ., and Goldak, JA. Consistent strain fields in 3D finite element analysis of welds, ASME Journal of Pressure Vessel Technology, August, pp 309–311, August 1990

    Google Scholar 

  28. Goldak J.A. and Gu M. Computational weld mechanics of the steady state, Mathematical Modeling of Weld Phenomena 2, Ed. H. Cerjak, The Institute of Metals, pp 207–225, 1995

    Google Scholar 

  29. Gu M., Goldak J.A. Steady state thermal analysis of welds with filler metal addition, Can. Met., Vol. 32, pp 49–55, 1993

    Google Scholar 

  30. Matsunawa A. Modeling of heat and fluid flow in are welding, Recent Trends in Welding Science and Technology, Ed. David S.A. and Vitek J (Materials Park, OH, ASM), pp 1–12, 1993

    Google Scholar 

  31. Goldak J.A., Zhou J., Breiguine V. and Montoya F. Thermal stress analysis of welds from melting point to room temperature, JWRI, Vol. 25, No. 2, pp 185–189, 1996

    Google Scholar 

  32. Goldak J.A., Breiguine V. and Dai N. Computational weld mechanics; A progress report on ten grand challenges, International Trends in Welding Research, Gatlinburg Tennessee, June 5–9 1995

    Google Scholar 

  33. Weber G. and Anand L. Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscolplastic solids. Comput. Methods Appl. Mech. Engrg. 79, pp 173–202, 1990

    Article  MATH  Google Scholar 

  34. Richter F: Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen, Heft 8, Stahleisen Sonderberichte, Verlag Stahleisen, Duesseldorf Germany, 1973

    Google Scholar 

  35. Weber G., Lush A., Zavaliangos A. and Anand L. An objective time-integration procedure for isotropic rate independent and rate dependent elastic-plastic constitutive equations, International Journal of Plasticity 6, pp 701–774, 1990

    Article  MATH  Google Scholar 

  36. Goldak J.A., Breiguine V., Dai N. and Zhou J. Thermal stress analysis in welds for hot cracking, ASME Journal of Pressure Vessel Technology, Jan. 24, 1996

    Google Scholar 

  37. Le Tallec P. Numerical analysis of viscoelastic problems, Masson. Paris, 1990

    MATH  Google Scholar 

  38. Brown S.B., Kim K.H. and Anand L. An internal variable constitutive model for hot working of metals, International Journal of Plasticity, Vol. 5, pp 95–130, 1989

    Article  MATH  Google Scholar 

  39. Oddy AS, Goldak JA and McDill JMJ. Transformation plasticity and residual stresses in single-pass repair welds, ASME J Pressure Vessel Technology, Vol. 114, pp 33–38, 1992

    Article  Google Scholar 

  40. Oddy AS, Goldak JA and McDill JMJ. Numerical analysis of transformation plasticity relation in 3D finite element analysis of welds, European Journal of Mechanics, A/Solids, Vol. 9, No. 3 pp 253–263, 1990

    Google Scholar 

  41. Leblond J.B., Mottet G. and Devaux J.C. A theoretical and numerical approach to the plastic behavior of steels during phase transformation —II. Study of classical plasticity for ideal-plastic phase, Journal Mech. Phys. Solids, Vol. 34, pp 411–432, 1986

    Article  Google Scholar 

  42. Oddy AS, Goldak JA and Reed RC. Martensite formation, transformation plasticity and stress in high strength steel welds, Proc. of the 3rd Int. Conf. on Trends in Welding Research, pp 131–137, 1992

    Google Scholar 

  43. Goldak J.A. Bibby M.J. and Gu M. Heat and fluid flow in welds, Proceedings of the International Institute of Welding Congress on Joining Research, Ed. T.H. North, Chapman and Hall, pp 69–82, July 1990

    Google Scholar 

  44. Ashby M.F. Physical modeling of materials problems, Materials Science and Technology, Vol. 8, pp 102–111, 1992

    Google Scholar 

  45. Radaj D. Eigenspannungen und Verzug beim Schweissen, Rechen-und Messverfahren, Fachbuchreihe Schweisstechnik, DVS-Verlag GmbH, Duesseldorf 2000

    Google Scholar 

  46. Matsuda F., Tomita S. Quantitative evaluation of solidification brittleness of weld metal by MISO technique, Recent Trends in Welding Science and Technology, Ed. David S.A. and Vitek I., (Materials Park, OH, ASM), pp 689–694, 1993

    Google Scholar 

  47. Chihoski Russel A. Expansion and Stress Around Aluminum Weld Puddles, Welding Research Supplement, pp 263s–276s, Sep. 1979

    Google Scholar 

  48. Pilipenko A (2001) Computer simulation of residual stress and distortion of thick plates in multielectrode submerged are welding. Doctoral thesis, Norwegian University of Science and Technology

    Google Scholar 

  49. Hibbitt HD., Marcal P.V. A numerical thermo-mechanical model for the welding and subsequent loading of a fabricated structure, Comp. & Struct., Vol. 3, pp 1145–1174, 1973.

    Article  Google Scholar 

  50. Gu M., Goldak J.A. and Hughes E. Modeling the evolution of microstructure in the heat-affected-zone of steady state welds, Can. Metall. Quarterly 32, No. 4, pp 351–361, 1993

    Google Scholar 

  51. Patel B. (1985). Thermo-elasto-plastic finite element formulation for deformation and residual stresses due to welds. PhD Thesis, Carleton University.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Evolution of Microstructure Depending on Deformations. In: Computational Welding Mechanics. Springer, Boston, MA. https://doi.org/10.1007/0-387-23288-5_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-23288-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23287-4

  • Online ISBN: 978-0-387-23288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics