Skip to main content

Evolution of Microstructure Depending on Temperature

  • Chapter
Computational Welding Mechanics
  • 2797 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldak J.A. and Gu M. Computational weld mechanics of the steady state, Mathematical Modeling of Weld Phenomena 2, Ed. H. Cerjak, The Institute of Metals, pp 207–225, 1995

    Google Scholar 

  2. Gu M., Goldak J.A. Steady state thermal analysis of welds with filler metal addition, Can. Met., Vol. 32, pp 49–55, 1993

    Google Scholar 

  3. Rappaz M. Process modeling and microstructure, Philosophical Transactions of the Royal Society of London Series A-Physical Sciences and Engineering, Vol. 351, No. 1697, pp 563–577, June 15 1995

    Google Scholar 

  4. Khoral P. (1989). Coupling microstructure to heat transfer computation in weld analysis. Masters Thesis, Carleton University.

    Google Scholar 

  5. Berkhout C.F. Weld thermal simulators for research and problem solving, Seminar Handbook, The Welding Institute, Cambridge U.K., pp 21–23, 1972

    Google Scholar 

  6. Ion J.C. and Easterling K.E. Proceedings of Third Scandanavian Symposium in Material Science, Oslo Finland, pp 79–85

    Google Scholar 

  7. Rosenthal D. The theory of moving sources of heat and its application to metal treatments, Trans ASME, Vol. 68, pp 849–865, 1946

    Google Scholar 

  8. Rykalin R.R. Energy sources for welding, Welding in the World, Vol. 12, No. 9/10, p 227–248, 1974

    Google Scholar 

  9. Ion J.C., Easterling K.E. and Ashby M.F. A second report on diagram of microstructure and hardness for heat affected zones in welds, Acta Metallurgica, Vol. 32, pp 1949–1962, 1982

    Article  Google Scholar 

  10. Easterling K.E., Ashby M.F. and Li. A first report on diagrams for grain growth in welds, Acta Metallurgica, Vol. 30, pp 1969–1978, 1982

    Article  Google Scholar 

  11. Bastien P., Drollet J. and Maynier P. Prediction of microstructure via empirical formulae based on CCT diagrams, Hardenability Concepts with an Application to Steel, pp 163–176, 1977

    Google Scholar 

  12. Arata Y., Matsuda F. and Nakata K. Japanese Welding Research Institute Journal, Vol. 1, p 39, 1970

    Google Scholar 

  13. Bibby M. J., Chong L.M. and Goldak J.A. Predicting heat affected zone hardness by the weld test method, Journal of Testing and Evaluation, ASTM, Vol. 11, p 126, 1983

    Google Scholar 

  14. Alberry P.J. and Jones W.K.C. Computer model for prediction of heat affected zone microstructure in multipass weldments, Metal Technology, Vol. 9, pp 419–426, Oct. 1982

    Google Scholar 

  15. Rosenthal D. The theory of moving sources of heat and its application to metal treatments, Trans ASME, Vol. 68, pp 849–865, 1946

    Google Scholar 

  16. Kirkaldy J.S. and Venugopalan: Prediction of microstructure and hardenability in low alloy steels, phase transformation in ferrous alloys. Proceedings of the International Conference, Oct. 4–6, 1983

    Google Scholar 

  17. Kirkaldy J.S. and Sharm R.C. A new phenomenology for steel IT and CCT Curves, Scripta Metallurgical, Vol. 16, p 1193, 1982

    Article  Google Scholar 

  18. Kirkaldy J.S. Prediction of alloy hardenability from thermodynamic and kinetic data, Metallurgical Transactions, Vol. 4, p 2327, 1973

    Google Scholar 

  19. Kirkaldy J.S. and Baganis E.A. Thermodynamic prediction of the Ae3 temperature of steels with additions of Mn, Si, Cr, Mo and Cu, Metallurgical Transactions, Vol. 9A, pp 495–501, 1978

    Google Scholar 

  20. Henwood C.E. (1998). An analytical model for computing weld microstructure. Master’s thesis, Carleton University.

    Google Scholar 

  21. Watt D. F., Coon L., Bibby M. J., Goldak J.A. and Henwood C. An algorithm for modeling microstructural development in weld heat affected zones, Acta Metal, Vol. 36, No 11, pp 3029–3035, 1988

    Article  Google Scholar 

  22. Henwood C. Bibby M.J., Goldak J.A. and Watt D.F. Coupled transient heat transfer microstructure weld computations, Acta Metal, Vol. 36, No. 11, pp 3037–3046, 1988

    Article  Google Scholar 

  23. Gu M. (1992). Computational weld analysis for long welds. Doctoral thesis Carleton University.

    Google Scholar 

  24. Lohner R. Commn. Appl. Numer. Meth., Vol. 4, p 123, 1988

    Article  MathSciNet  Google Scholar 

  25. Gu M., Goldak J.A. and Hughes E. Modeling the evolution of microstructure in the heat-affected-zone of steady state welds, Can. Metall. Quarterly 32, No. 4, pp 351–361, 1993

    Google Scholar 

  26. Goldak J., Chakravarti A. and Bibby M. A finite element model for welding heat sources, Metallurgical Transactions B, Vol. 15B, pp 299–305, June 1984

    Google Scholar 

  27. Bibby M.J., Eastman K. and Goldak J.A. Metallurgical Transactions, Vol. 14B, p 483, 1983

    Google Scholar 

  28. Cameron S. IEEE Computational Graphics Applications, Vol. 68, May 1991

    Google Scholar 

  29. Strang G. Introduction to applied Mathematics, Wellesley Cambridge Press, Wellesly Massachusetts USA, 1986

    Google Scholar 

  30. Gu M., Goldak J.A. and Bibby M.J.; Computational heat transfer in welds with complex weld pool shapes, Adv. Manuf. Eng., Vol. 3. January 1991

    Google Scholar 

  31. Barlow J.A. One weld or two? The formation of a submergend are weld pool, Welding Inst. Res. Bull., pp 177–180, June 1982

    Google Scholar 

  32. McKellinget J. and Szekely J. Metall. Trans., Vol. 17A, p 1139, 1986

    Google Scholar 

  33. Leslie W.C. The physical metallurgy of steels, MeGraw-Hill Book Company, pp 256–276, 1981

    Google Scholar 

  34. Andrews K.W. Journal of Iron Steel Institute, Vol. 203, p 721, 1965

    Google Scholar 

  35. Lu W.K. McMaster University, Private Communication to D.F. Watt.

    Google Scholar 

  36. Ion J. C. (1984). Modeling of microstructural changes in steels due to fusion welding, Doctoral Thesis, Lulea University.

    Google Scholar 

  37. Maynier Ph. and Drollet J. Creusot-Loire system for the prediction of the mechanical propertics of low alloy steel products, hardenability concepts with application to steels, Trans. AIME, p 518, 1977

    Google Scholar 

  38. Adams C.M. Cooling rate and peak temperatures in fusion welding, Welding Journal AWS, Vol. 37, No. 5, p 210, 1958

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Evolution of Microstructure Depending on Temperature. In: Computational Welding Mechanics. Springer, Boston, MA. https://doi.org/10.1007/0-387-23288-5_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-23288-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23287-4

  • Online ISBN: 978-0-387-23288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics