Skip to main content

QTL Analysis of Multigenic Disease Resistance in Plant Breeding

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.A. 1950. Genetics of resistance to the common bean mosaic virus bean virus 1) in the bean (Phaseolus vulgaris L.). Phytopathology 40:69–79.

    Google Scholar 

  • Ariyarathne, H.M., Coyne, D.P., Jung, G., Skroch P.W., Vidaver, A.K., Steadman, J.R., Miklas, P.N., and Bassett, M.J. 1999. Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. J. Am. Soc. Horticult. Sci. 124:654–662.

    CAS  Google Scholar 

  • Asins, M.J. 2002. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed. 121:281–291.

    Article  Google Scholar 

  • Backes, G., G. Schwarz, Wenzel, G., and Jahoor, A. 1996. Comparison between QTL analysis of powdery mildew resistance in barley based on detached primary leaves and on field data. Plant Breed. 115:419–421.

    Article  Google Scholar 

  • Bent, A.F. 1996. Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771.

    Article  PubMed  CAS  Google Scholar 

  • Bernardo, R. 2001. What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci. 41:1–4.

    Article  CAS  Google Scholar 

  • Botstein, D., White, R.L., Skolnick, M., and Davis, R.W. 1980. Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314–331.

    PubMed  CAS  Google Scholar 

  • Burr, B., and Burr, F.A. 1991. Recombinant inbreds for molecular mapping in maize — theoretical and practical considerations. Trends Genet. 7:55–60.

    PubMed  CAS  Google Scholar 

  • Byrne, P.F., McMullen, M.D., Snook, M.E., Musket, T.A., Theuri, J.M., Widstrom, N.W., Wiseman, B.R., and Coe, E.H. 1996. Quantitative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc. Natl. Acad. Sci. USA 93:8820–8825.

    Article  PubMed  CAS  Google Scholar 

  • Caranta, C., Lefebvre, V., and Palloix, A. 1997. Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol. Plant Microbe Interact. 10:872–878.

    CAS  Google Scholar 

  • Castano, F., Vear, F., and Delabrouhe, D.T. 1993. Resistance of sunflower inbred lines to various forms of attack by Sclerotinia sclerotiorum and relations with some morphological characters. Euphytica 68:85–98.

    Article  Google Scholar 

  • Castro, A.J., Chen, X.M., Hayes, P.M., Knapp, S.J., Line, R.F., Toojinda, T., and Vivar, H. 2002. Coincident QTL which determine seedling and adult plant resistance to stripe rust in barley. Crop Sci. 42:1701–1708.

    Article  CAS  Google Scholar 

  • Causse, M., Rocher, J.P., Henry, A.M., Charcosset, A., Prioul, J.L., and Devienne, D. 1995. Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key-enzyme loci. Mol. Breed. 1:259–272.

    Article  CAS  Google Scholar 

  • Chen, F.Q., Prehn, D., Hayes, P.M., Mulrooney, D., Corey, A., and Vivar, H. 1994. Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor. Appl. Genet. 88:215–219.

    CAS  Google Scholar 

  • Coyne, D.P. 1980. Modification of plant architecture and crop yield by breeding. HortScience 15:244–247.

    Google Scholar 

  • Cregan, P.B., Mudge, J., Fickus, E.W., Marek, L.F., Danesh, D., Denny, R., Shoemaker, R.C., Matthews, B.F., Jarvik, T., and Young, N.D. 1999a. Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor. Appl. Genet. 98:919–928.

    Article  CAS  Google Scholar 

  • Cregan, P.B., Jarvik, T., Bush, A.L., Shoemaker, R.C., Lark, K.G., Kahler, A.L., Kaya, N., VanToai, T.T., Lohnes, D.G., Chung, L., and Specht, J.E. 1999b. An integrated genetic linkage map of the soybean genome. Crop Sci. 39:1464–1490.

    Article  CAS  Google Scholar 

  • Danesh, D., and Young, N.D. 1994. Partial resistance loci for tomato bacterial wilt show differential race specificity. Rep. Tomato Genet. Coop. 44:12–13.

    Google Scholar 

  • Eenink, A.H. 1976. Genetics of host-parasite relationships and uniform and differential resistance. Neth. J. Plant Pathol. 82:133–145.

    Article  Google Scholar 

  • Faris, J.D., Li, W.L., Liu, D.J., Chen, P.D., and Gill, B.S. 1999. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 98:219–225.

    Article  CAS  Google Scholar 

  • Frary, A., Nesbitt, T.C., Grandillo, S., van der Knaap, E., Cong, B., Liu, J.P., Meller, J., Elber, R., Alpert, K.B., and Tanksley, S.D. 2000. Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Freymark, P.J., Lee, M., Woodman, W.L., and Martinson, C.A. 1993. Quantitative and qualitative trait loci affecting host-plant response to Exserohilum turcicum in maize (Zea mays L). Theor. Appl. Genet. 87:537–544.

    Article  CAS  Google Scholar 

  • Freyre, R., Skroch, P.W., Geffroy, V., Adam-Blondon, A.F., Shirmohamadali, A., Johnson, W.C., Llaca, V., Nodari, R.O., Pereira, P.A., Tsai, S.M., Tohme, J., Dron, M., Nienhuis, J., Vallejos, C.E., and Gepts, P. 1998. Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor. Appl. Genet. 97:847–856.

    Article  CAS  Google Scholar 

  • Gale, M.D., and Devos, K.M. 1998. Plant comparative genetics after 10 years. Science 282:656–659.

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeier, B., Schachtschabel, U., Kaufmann, H., Thompson, R.D., Bonierbale, M.W., Ganal, M.W., Tanksley, S.D., and Salamini, F. 1991. RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor. Appl. Genet. 83:49–57.

    Article  Google Scholar 

  • Geffroy, V., Creusot, F., Falquet, J., Sevignac, M., Adam-Blondon, A.F., Bannerot, H., Gepts, P., and Dron, M. 1998. A family of LRR sequences in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor. Appl. Genet. 96:494–502.

    Article  CAS  Google Scholar 

  • Geffroy, V., Sevignac, M., De Oliveira, J.C.F., Fouilloux, G., Skroch, P., Thoquet, P., Gepts, P., Langin, T., and Dron, M. 2000. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol. Plant Microbe Interact. 13:287–296.

    PubMed  CAS  Google Scholar 

  • Giovannoni, J.J., Wing, R.A., Ganal, M.W., and Tanksley, S.D. 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 19:6553–6558.

    PubMed  CAS  Google Scholar 

  • Goldman, I.L., Rocheford, T.R., and Dudley, J.W. 1993. Quantitative trait loci influencing protein and starch concentration in the Illinois long-term selection maize strains. Theor. Appl. Genet. 87:217–224.

    Article  CAS  Google Scholar 

  • Grube, R.C., Radwanski, E.R., and Jahn, M. 2000. Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887.

    PubMed  CAS  Google Scholar 

  • Hadley, H.H., and Openshaw, S.J. 1980. Interspecific and intergeneric hybridization. In Hybridization of Crop Plants, eds. W.R. Fehr, and H.H. Hadley, pp. 133–159. Amdison, WI: American Society Agronomy.

    Google Scholar 

  • Hallauer, A.R., and Miranda, J.B. 1981. Quantitative Genetics in Maize Breeding. Ames IA: Iowa State University Press.

    Google Scholar 

  • Hammond-Kosack, K.E., and Jones, J.D.G. 1997. Plant disease resistance genes. Ann. Rev. Plant Phys. Plant Mol. Biol. 48:575–607.

    Article  CAS  Google Scholar 

  • Harrison, B.D. 2002. Virus variation in relation to resistance-breaking in plants. Euphytica 124:181–192.

    Article  CAS  Google Scholar 

  • Honma, S. 1956. A bean interspecific hybrid. J. Hered. 47:217–220.

    Google Scholar 

  • Hunter, R.L., and Markert, C.L. 1957. Histochemical demonstration of enzymes separated by zone electrophoreses in starch gels. Science 125:1294–1295.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, J. 1989. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor. Appl. Genet. 78:613–618.

    Article  Google Scholar 

  • Johnson, R. 1984. Acritical analysis of durable resistance. Annu. Rev. Phytopathol. 22:309–330.

    Article  Google Scholar 

  • Jones, E.S., Breese, W.A., Liu, C.J., Singh, S.D., Shaw, D.S., and Witcombe, J.R. 2002. Mapping quantitative trait loci for resistance to downy mildew in pearl millet: Field and glasshouse screens detect the same QTL. Crop Sci. 42:1316–1323.

    Article  CAS  Google Scholar 

  • Jung, G., Skroch, P.W., Nienhuis, J., Coyne, D.P., Arnaud-Santana, E., Ariyarathne, H.M., and Marita, J.M. 1999. Confirmation of QTL associated with common bacterial blight resistance in four different genetic backgrounds in common bean. Crop Sci. 39:1448–1455.

    Article  CAS  Google Scholar 

  • Keller, M., Keller, B., Schachermayr, G., Winzeler, M., Schmid, J.E., Stamp, P., and Messmer, M.M. 1999. Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population. Theor. Appl. Genet. 98:903–912.

    Article  CAS  Google Scholar 

  • Kelly, J.D., Gepts, P., Miklas, P.N., and Coyne, D.P. 2003. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res. 82:135–154.

    Article  Google Scholar 

  • Kelly, J.D., and V.A. Vallejo. 2005. QTL analysis of multigenic disease resistance in plant breeding. In S. Tuzun and E. Bent (ed.) Multigenic and Induced Systemic Resistance in Plants (in press).

    Google Scholar 

  • Kim, H.S., and Diers, B.W. 2000. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci. 40:55–61.

    Article  Google Scholar 

  • Knapp, S.J. 1991. Using molecular markers to map multiple quantitative trait loci — models for backcross, recombinant inbred, and doubled haploid progeny. Theor. Appl. Genet. 81:333–338.

    Article  CAS  Google Scholar 

  • Knapp, S.J., Bridges, W.C., and Birkes. D. 1990. Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl. Genet. 79:583–592.

    Article  Google Scholar 

  • Kolb, F.L., Bai, G.H., Muehlbauer, G.J., Anderson, J.A., Smith, K.P., and Fedak, G. 2001. Host plant resistance genes for fusarium head blight: mapping and manipulation with molecular markers. Crop Sci. 41:611–619.

    Article  CAS  Google Scholar 

  • Kolkman, J.M., and Kelly, J.D. 2002. Agronomic traits affecting resistance to white mold in common bean. Crop Sci. 42:693–699.

    Article  Google Scholar 

  • Kolkman, J.M., and Kelly, J.D. 2003. QTL conferring resistance and avoidance to white mold in common bean. Crop Sci. 43:539–548.

    Article  CAS  Google Scholar 

  • Lamb, C.J., Lawton, M.A., Dron, M., and Dixon, R.A. 1989. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., and Botstein, D. 1986a. Mapping complex genetic-traits in humans: new methods using a complete RFLP linkage map. Cold Spring Harb. Symp. Quant. Biol. 51:49–62.

    PubMed  Google Scholar 

  • Lander, E.S., and Botstein, D. 1986b. Strategies for studying heterogeneous genetic-traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc. Natl. Acad. Sci. USA 83:7353–7357.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., and Botstein, D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199.

    PubMed  CAS  Google Scholar 

  • Leonards-Schippers, C., Gieffers, W., Schaferpregl, R., Ritter, E., Knapp, S.J., Salamini, F., and Gebhardt, C. 1994. Quantitative resistance to Phytophthora infestans in potato — a case-study for QTL mapping in an allogamous plant-species. Genetics 137:67–77.

    PubMed  CAS  Google Scholar 

  • Li, Z.K., Luo, L.J., Mei, H.W., Paterson, A.H., Zhao, X.Z., Zhong, D.B., Wang, Y.P., Yu, X.Q., Zhu, L., Tabien, R., Stansel, J.W., and Ying, C.S. 1999. A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol. Gen. Genet. 261:58–63.

    Article  PubMed  CAS  Google Scholar 

  • Lindhout, P. 2002. The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124:217–226.

    Article  CAS  Google Scholar 

  • Liu, B.H. 1998. Statistical genomics: Linkage, Mapping, and QTL Analysis. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lubberstedt, T., Klein, D., and Melchinger, A.E. 1998. Comparative QTL mapping of resistance to Ustilago maydis across four populations of European flint-maize. Theor. Appl. Genet. 97:1321–1330.

    Article  Google Scholar 

  • Mangin, B., Thoquet, P., Olivier, J., and Grimsley, N.H. 1999. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172.

    PubMed  CAS  Google Scholar 

  • Martin, T.J., and Ellingboe, A.H. 1976. Differences between compatible parasite/host genotypes involving the Pm4 locus of wheat and the correspondiing genes in Erysiphe graminis f. sp. tritici. Phytopathology 66:1435–1438.

    Article  Google Scholar 

  • McElroy, J.B. 1985. Breeding dry beans, Phaseolus vulgaris L. for common bacterial blight resistance derived from Phaseolus acutifolius A. Gray. Ph.D. dissertation., Cornell University, Ithaca, N.Y.

    Google Scholar 

  • Mestries, E., Gentzbittel, L., de Labrouhe, D.T., Nicolas, P., and Vear, F. 1998. Analyses of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.), using molecular markers. Mol. Breed. 4:215–226.

    Article  CAS  Google Scholar 

  • Michelmore, R.W., and Meyers, B.C. 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8:1113–1130.

    PubMed  CAS  Google Scholar 

  • Michelmore, R.W., Paran, I., and Kesseli, R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88:9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Miklas, P.N., Stone, V., Urrea, C.A., Johnson, E., and Beaver, J.S. 1998. Inheritance and QTL analysis of field resistance to ashy stem blight in common bean. Crop Sci. 38:916–921.

    Article  Google Scholar 

  • Miklas, P.N., Johnson, E., Stone, V., Beaver, J.S., Montoya, C., and Zapata, M. 1996. Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci. 36:1344–1351.

    Article  CAS  Google Scholar 

  • Miklas, P.N., Smith, J.R., Riley, R., Grafton, K.F., Singh, S.P., Jung, G., and Coyne, D.P. 2000. Marker-assisted breeding for pyramided resistance to common bacterial blight in common bean. Ann. Rep. Bean Improv. Coop. 43:39–40.

    Google Scholar 

  • Miklas, P.N., Coyne, D.P., Grafton, K.F., Mutlu, N., Reiser, J., Lindgren, D.T., and Singh, S.P. 2003. A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana No. 5. Euphytica 131:137–146.

    Article  CAS  Google Scholar 

  • Mundt, C.C., Cowger, C., and Garrett, K.A. 2002. Relevance of integrated disease management to resistance durability. Euphytica 124:245–252.

    Article  CAS  Google Scholar 

  • Narayanan, N.N., Baisakh, N., Vera Cruz, C.M., Gnanamanickam, S.S., Datta, K., and Datta, S.K. 2002. Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Sci 42:2072–2079.

    Article  CAS  Google Scholar 

  • Nass, H.A., Pedersen, W.L., Mackenzie, D.R., and Nelson, R.R. 1981. The residual effects of some “defeated” powdery mildew resistance genes in isolines of winter wheat. Phytopathology 71:1315–1318.

    Google Scholar 

  • Nelson, R.R. 1978. Genetics of horizontal resistance to plant diseases. Annu. Rev. Phytopathol. 16:359–378.

    Article  Google Scholar 

  • Nodari, R.O., Tsai, S.M., Guzman, P., Gilbertson, R.L., and Gepts, P. 1993. Toward an integrated linkage map of common bean. 3. Mapping genetic-factors controlling host-bacteria interactions. Genetics 134:341–350.

    PubMed  CAS  Google Scholar 

  • Parlevliet, J.E. 1975. Disease resistance in plants and its consequences for plant breeding, In Plant Breeding II, ed K.J. Frey., pp. 309–364. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Parlevliet, J.E. 2002. Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124:147–156.

    Article  CAS  Google Scholar 

  • Parlevliet, J.E., and Zadoks, J.C. 1977. Integrated concept of disease resistance — new view including horizontal and vertical resistance in plants. Euphytica 26:5–21.

    Article  Google Scholar 

  • Parniske, M., Hammond-Kosack, K.E., Golstein, C., Thomas, C.M., Jones, D.A., Harrison, K., Wulff, B.B.H., and Jones, J.D.G. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91:821–832.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A.H. 1998. Of blending, beans, and bristles: the foundations of QTL mapping, In Molecular Dissection of Complex Traits, ed. A.H. Paterson, pp. 1–10. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Pflieger, S., Palloix, A., Caranta, C., Blattes, A., and Lefebvre, V. 2001. Defense response genes co-localize with quantitative disease resistance loci in pepper. Theor. Appl. Genet. 103:920–929.

    Article  CAS  Google Scholar 

  • Pilet, M.L., Delourme, R., Foisset, N., and Renard, M. 1998. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor. Appl. Genet. 97:398–406.

    Article  CAS  Google Scholar 

  • Pryor, T., and Ellis, J. 1993. The genetic complexity of fungal resistance genes in plants. Adv. Plant Pathol. 10:281–305.

    Google Scholar 

  • Qi, X., Niks, R.E., Stam, P., and Lindhout, P. 1998. Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor. Appl. Genet. 96:1205–1215.

    Article  CAS  Google Scholar 

  • Qi, X., Jiang, G., Chen, W., Niks, R.E., Stam, P., and Lindhout, P. 1999. Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor. Appl. Genet. 99:877–884.

    Article  CAS  Google Scholar 

  • Riley, R. 1973. Genetic changes in hosts and the significance of disease. Ann. Appl. Biol. 75:128–132.

    Article  Google Scholar 

  • Robertson, D.S. 1989. Understanding the relationship between qualitative and quantitative genetics, In Development and Application of Molecular Markers to Problems in Plant Genetics, eds. T. Helentjaris, and B. Benjamin, pp. 81–87. Cold Spring, Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Ronald, P.C. 1997. The molecular basis of disease resistance in rice. Plant Mol. Biol. 35:179–186.

    Article  PubMed  CAS  Google Scholar 

  • Ronald, P.C. 1998. Resistance gene evolution. Curr. Opin. Plant Biol. 1:294–298.

    Article  PubMed  CAS  Google Scholar 

  • Ronin, Y.I., Korol, A.B., and Weller, J.I. 1998. Selective genotyping to detect quantitative trait loci affecting multiple traits: interval mapping analysis. Theor. Appl. Genet. 97:1169–1178.

    Article  Google Scholar 

  • Ryder, T.B., Hedrick, S.A., Bell, J.N., Liang, X.W., Couse, S.D., and Lamb, C.J. 1987. Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol. Gen. Genet. 210:219–233.

    Article  PubMed  CAS  Google Scholar 

  • Sax, K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560.

    PubMed  CAS  Google Scholar 

  • Schechert, A.W., Welz, H.G., and Geiger, H.H. 1999. QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Sci. 39:514–523.

    Article  Google Scholar 

  • Schneider, K.A., Grafton, K.F., and Kelly, J.D. 2001. QTL analysis of resistance to fusarium root rot in bean. Crop Sci. 41:535–542.

    Article  CAS  Google Scholar 

  • Scott, M.E., and Michaels, T.E. 1992. Xanthomonas resistance of Phaseolus interspecific cross selections confirmed by field performance. HortScience 27:348–350.

    Google Scholar 

  • Singh, S.P., and Munoz, C.G. 1999. Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci. 39:80–89.

    Article  Google Scholar 

  • Smithies, O. 1955. Zone electrophoreses in starch gels. Biochem. J. 61:629.

    PubMed  CAS  Google Scholar 

  • Song, W.Y., Pi L.Y, Wang, G.L., Gardner, J., Holsten, T., and Ronald, P.C. 1997. Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, G.F. 1966. Quantitative genetics in plant improvement. In Plant Breeding, ed. K.J. Frey, pp. 315–357. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Staub, J.E., Serquen, F.C., and Gupta, M. 1996. Genetic markers, map construction, and their application in plant breeding. HortScience 31:729–741.

    CAS  Google Scholar 

  • Tanksley, S.D., and McCouch, S.R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley, S.D., Young, N.D., Paterson, A.H., and Bonierbale, M.W. 1989. RFLP mapping in plant-breeding — new tools for an old science. Bio/Technology 7:257–264.

    Article  CAS  Google Scholar 

  • Thoday, J.M. 1961. Location of polygenes. Nature 191:368–370.

    Article  Google Scholar 

  • Timmerman-Vaughan, G.M., Frew, T.J., Russell, A.C., Khan, T., Butler, R., Gilpin, M., Murray, S., and Falloon, K. 2002. QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111.

    Article  CAS  Google Scholar 

  • Toubart, P., Desiderio, A., Salvi, G., Cervone, F., Daroda, L., Delorenzo, G., Bergmann, C., Darvill, A.G., and Albersheim, P. 1992. Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP of Phaseolus vulgaris L. Plant J. 2:367–373.

    PubMed  CAS  Google Scholar 

  • van der Plank, J.E. 1968. Disease Resistance in Plants. Academic Press, New York.

    Google Scholar 

  • van der Voort, J.R., Lindeman, W., Folkertsma, R., Hutten, R., Overmars, H., van der Vossen, E., Jacobsen, E., and Bakker, J. 1998. A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theor. Appl. Genet. 96:654–661.

    Article  Google Scholar 

  • Vleeshouwers, V., van Dooijeweert, W., Govers, F., Kamoun, S., and Colon, L.T. 2000. The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta 210:853–864.

    Article  PubMed  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP — a new technique for DNA-fingerprinting. Nucleic Acids Res. 23:4407–4414.

    PubMed  CAS  Google Scholar 

  • Walter, M.H., Liu, J., Grand, C., Lamb, C.J., and Hess, D. 1990. Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Mol. Gen. Genet. 222:353–360.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.L., and Paterson, A.H. 1994. Assessment of DNA pooling strategies for mapping of QTL. Theor. Appl. Genet. 88:355–361.

    Google Scholar 

  • Wang, G.L., Mackill, D.J., Bonman, J.M., McCouch, S.R., Champoux, M.C., and Nelson, R.J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434.

    PubMed  CAS  Google Scholar 

  • Weber, J.L., and May, P.E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain-reaction. Am. J. Hum. Genet. 44:388–396.

    PubMed  CAS  Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res. 18:6531–6535.

    PubMed  CAS  Google Scholar 

  • Young, N.D. 1996. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol. 34:479–501.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y.G., Buss, G.R., and Maroof, M.A.S. 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide binding site. Proc. Natl. Acad. Sci. USA 93:11751–11756.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z.H., Mackill, D.J., Bonman, J.M., and Tanksley, S.D. 1991. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor. Appl. Genet. 81:471–476.

    Article  Google Scholar 

  • Zeng, Z.B. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90:10972–10976.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Z.B. 1994. Precision mapping of quantitative trait loci. Genetics 136:1457–1468.

    PubMed  CAS  Google Scholar 

  • Zimnoch-Guzowska, E., Marczewski, W., Lebecka, R., Flis, B., Schafer-Pregl, R., Salamini, F., and Gebhardt, C. 2000. QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Sci. 40:1156–1167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kelly, J.D., Vallejo, V. (2006). QTL Analysis of Multigenic Disease Resistance in Plant Breeding. In: Tuzun, S., Bent, E. (eds) Multigenic and Induced Systemic Resistance in Plants. Springer, Boston, MA . https://doi.org/10.1007/0-387-23266-4_3

Download citation

Publish with us

Policies and ethics