Skip to main content

The Role of Terpene Synthases in the Direct and Indirect Defense of Conifers Against Insect Herbivory and Fungal Pathogens

  • Chapter
Multigenic and Induced Systemic Resistance in Plants

13.6 Conclusion

The results described in this brief review provide fertile ground for future analyses of the presence or absence or sequence variation of certain TPS genes in particular species or within populations of conifers and of overall expression patterns of TPS and other genes in the pathways affecting terpenoid biosynthesis and ultimately resin composition, volatile emission, and defense against insects and pathogens in conifers. The multigene TPS families in conifers can be explored for development of SNPs and other markers potentially associated with variation in defenses and resistance to insect pests or pathogens in conifers. Such work ought to be carried out in terms of what is already known about tree biochemical, anatomical, and physiological responses, terpenoid toxicity, insect behavior before and during colonization of host trees, and differential host preferences. An approach that takes into account the multigenic nature of terpenoid defenses in conifers will doubtless shed more light on the coevolutionary relationship between bark beetles and their host trees, and will provide new tools for monitoring and managing these economically and ecologically important conifer—insect interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfaro, R.I. 1995. An induced defense reaction in white spruce to attack by the white pine weevil, Pissodes strobi. Can. J. Forensic Res. 25:1725–1730.

    Google Scholar 

  • Alfaro, R.I., Borden, J.H., King, J.N., Tomlin, E.S., McIntosh, R.L., and Bohlmann, J. 2002. Mechanisms of resistance in conifers against shoot infesting insects. The case of the white pine weevil Pissodes strobi (Peck) (Coleoptera: Curculionidae). In Mechanisms and Deployment of Resistance to Insects, eds. M.R. Wagner, K.M. Clancy, F. Lieutier, and T.D. Paine, pp. 105–130. Boston, MA: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Aubourg, S., Lecharny, A., and Bohlmann, J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol. Genet. Genomics 267:730–745.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.H., Mansfield, J.W., Lewis, M.J., and Beale, M.H. 2002. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.). Phytochemistry 60:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Bernays, E.A., and Chapman, R.F. 1994. Host-Plant Selection by Phytophagous Insects. Boston, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Bohlmann, J., Steele, C.L., and Croteau, R. 1997. Monoterpene synthases from grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S,5S)-pinene synthase. J. Biol. Chem. 272:21784–27792.

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann, J., Crock, J., Jetter, R., and Croteau, R. 1998a. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc. Natl. Acad. Sci. 95:6756–6761.

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann, J., Gilbert Meyer-Gauen, G., and Croteau, R. 1998b. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. 95:4126–4133.

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S., and Croteau, R. 1999. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch. Biochem. Biophys. 368:232–243.

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann, J., Martin, D., Oldham, N.J., and Gershenzon, J. 2000. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-β-ocimene synthase. Arch. Biochem. Biophys. 375:261–269.

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann, J., Stauber, E.J., Krock B., Oldham, N.J., Gershenzon J., and Baldwin, I.T. 2002. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 60:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Borden J.H. 1985. Aggregation pheromones. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, eds. G.A. Kerkut, and L.I. Gilbert, Vol. 9, pp. 257–285. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Byers, J.A. 1995. Host-tree chemistry affecting colonization in bark beetles. In Chemical Ecology of Insects 2, eds. R.T. Cardé, and W.J. Bell, pp. 154–213. New York: Chapman and Hall.

    Google Scholar 

  • Byun McKay, S.A., Hunter, W.L., Godard, K.A., Wang, S.X., Martin, D.M., Bohlmann, J., and Plant, A.L. 2003. Insect attack and wounding induce traumatic resin duct development and gene expression of (−)-pinene synthase in Sitka spruce. Plant Physiol. 133:368–378.

    Article  CAS  Google Scholar 

  • Cane, D.E. 1999. Sesquiterpene biosynthesis: cyclization mechanisms. In Comprehensive Natural Products Chemistry, ed. D.E. Cane, Vol. 2, pp.155–200. Oxford: Pergamon.

    Google Scholar 

  • Chararas, C., Revolon, C., Feinberg, M., and Ducauze, C. 1982. Preference of certain Scolytidae for different conifers: a statistical approach. J. Chem. Ecol. 8:1093–1110.

    Article  Google Scholar 

  • Chen, Z., Kolb, T.E., and Clancy, K.M. 2002. The role of monoterpenes in resistance of Douglas fir to western spruce budworm defoliation. J. Chem. Ecol. 28:897–920.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J. 2003. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494.

    Article  PubMed  CAS  Google Scholar 

  • Croteau, R., Kutchan, T.M., and Lewis, N.G. 2000. Natural products (secondary metabolites). In Biochemistry and Molecular Biology of Plants, eds. B.B. Buchanan, W. Gruissem, and R.L. Jones, pp. 1250–1318. Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  • Davis, E.M., and Croteau, R. 2000. Cyclization enzymes in the biosynthesis of monterpenes, sesquiterpenes, and diterpenes. Topics Curr. Chem. 209:53–95.

    CAS  Google Scholar 

  • Edwards, P.B., Wanjura, W.J., and Brown, W.V. 1993. Selective herbivory by Christmas beetles in response to intraspecific variation in Eucalyptus terpenoids. Oecologia 95:551–557.

    Google Scholar 

  • Erdtman, H., Kimland, B., Norin, T., and Daniels P.J.L. 1968. The constituents of the “pocket resin” from Douglas fir Pseudotsuga menziesii (Mirb.) Franco. Acta Chem. Scand. 22:938–942.

    Article  CAS  Google Scholar 

  • Facchini, P.J., and Chappell, J. 1992. A gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc. Natl. Acad. Sci. USA 89:11088–11092.

    Article  PubMed  CAS  Google Scholar 

  • Fäldt, J. 2000. Volatile constituents in conifers and conifer-related wood-decaying fungi. Ph.D. thesis. Royal Institute of Technology, Department of Chemistry, Organic Chemistry. Stockholm, Sweden.

    Google Scholar 

  • Fäldt, J., Arimura, G-i., Gershenzon, J., Takabayashi, J., and Bohlmann, J. 2003a. Functional identification of AtTPS03 as (E)-β-ocimene synthase: a new monoterpene synthase catalyzing jasmonate-and wound-induced volatile formation in Arabidopsis thaliana. Planta 216:745–751.

    PubMed  Google Scholar 

  • Fäldt, J., Martin, D., Miller, B., Rawat, S., and Bohlmann, J. 2003b. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 51:119–133.

    Article  PubMed  Google Scholar 

  • Farmer, E.E., and Ryan C.A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound inducible proteinase inhibitors. Plant Cell 4:129–134.

    Article  PubMed  CAS  Google Scholar 

  • Franceschi, V.R., Krokene, P., Krekling, T., and Christiansen, E. 2000. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark beetle attack in Norway spruce (Pinaceae). Am. J. Bot. 87:314–326.

    Article  PubMed  Google Scholar 

  • Franceschi, V.R., Krekling, T., and Christiansen, E. 2002. Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. Bot. 89:578–586.

    CAS  Google Scholar 

  • Funk, C., and Croteau, R. 1994. Diterpenoid resin acid biosynthesis in conifers-characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis. Arch. Biochem. Biophys. 308:258–266.

    Article  PubMed  CAS  Google Scholar 

  • Greenhagen, B., and Chappell, J. 2001. Molecular scaffolds for chemical wizardry: Learning nature’s rules for terpene cyclases. Proc. Natl. Acad. Sci. USA 98:13479–13481.

    Article  PubMed  CAS  Google Scholar 

  • Hodges, J.D., Elam, W.W., Watson, W.F., and Nebeker, T.E. 1979. Oleoresin characteristics and susceptibility of 4 southern pines to southern pine beetle, Dendroctonus frontalis (Coleoptera: Scolytidae), attacks. Can. Entomol. 111:889–896.

    CAS  Google Scholar 

  • Hölscher, D.J., Williams, D.C., Wildung, M.R., and Croteau, R. 2003. A cDNA clone for 3-carene synthase from Salvia stenophylla. Phytochemistry 62:1081–1086.

    Article  CAS  Google Scholar 

  • Karban, R., and Baldwin, I.T. 1997. Induced Responses to Herbivory. Chicago: University of Chicago Press.

    Google Scholar 

  • Kessler, A., and Baldwin, I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, T., and Ogura K. 1999. Isopentenyl diphosphate isomerase and prenyl transferases. In Comprehensive Natural Products Chemistry, ed. D.E. Cane,Vol. 2, pp. 69–96. Oxford: Pergamon. Lange, B.M., Ketchum, R.E.B., and Croteau, R.B. 2001. Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis. Plant Physiol. 127:305–314.

    Google Scholar 

  • Lewinsohn, E., Gijzen, M., and Croteau, R. 1991. Defense-mechanisms of conifers — differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol. 96:44–49.

    Article  PubMed  CAS  Google Scholar 

  • Lieutier, F., Cheniclet, C., and Garcia, J. 1989. Comparison of the defense reactions of Pinus pinaster and Pinus sylvestris to attacks by two bark beetles (Coleoptera: Scolytidae) and their associated fungi. Environ. Entomol. 18:228–234.

    Google Scholar 

  • Litvak, M.E., and Monson, R.K. 1998. Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540.

    Article  Google Scholar 

  • Lu, S., Xu, R., Jia, J-W., Pang, J., Matsuda, S.P.T., and Chen, X-Y. 2002. Cloning and functional characterization of a β-pinene synthase from Aretemisia annua that shows a circadian pattern of expression. Plant Physiol. 130:477–486.

    Article  PubMed  CAS  Google Scholar 

  • Lücker, J., El Tamer, M.K., Schwab, W., Verstappen, F.W.A., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.A. 2002. Monoterpene biosynthesis in lemon (Citrus limon): cDNA isolation and functional analysis of four monoterpene synthases. Eur. J. Biochem. 269:3160–3171.

    Article  PubMed  CAS  Google Scholar 

  • MacMillan, J., and Beale, M.H. 1999. Diterpene biosynthesis. In Comprehensive Natural Products Chemistry, ed. D.E. Cane, Vol. 2, pp. 217–244. Oxford: Pergamon.

    Google Scholar 

  • Martin, D., Tholl, D., Gershenzon, J., and Bohlmann, J. 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 129:1003–1018.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D., Bohlmann, J., Gershenzon, J., Francke, W., and Seybold, S.J. 2003a. A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini. Naturwissen. 90:173–179.

    CAS  Google Scholar 

  • Martin, D.M., Gershenzon, J., and Bohlmann, J. 2003b. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol. 132:1586–1599.

    Article  PubMed  CAS  Google Scholar 

  • McGarvey, D.J., and Croteau, R. 1995. Terpenoid metabolism. Plant Cell 7:1015–1026.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, N.E., Franceschi, V.R., Solheim, H., Krekling, T., and Christiansen, E. 2000. Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. Am. J. Bot. 87:302–313.

    Article  PubMed  Google Scholar 

  • Paine, T.D., Raffa, K.F., and Harrington, T.C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Ann. Rev. Entomol. 42:179–206.

    Article  CAS  Google Scholar 

  • Paré, P.W., and Tumlinson, J.H. 1997a. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167.

    PubMed  Google Scholar 

  • Paré, P.W., and Tumlinson, J.H. 1997b. Induced synthesis of plant volatiles. Nature 385:30–31.

    Article  Google Scholar 

  • Persson, M., Sjödin, K., Borg-Karlson, A.K., Norin, T., and Ekberg, I. 1996. Relative amounts and enantiomeric compositions of monoterpene hydrocarbons in xylem and needles of Picea abies. Phytochemistry 42:1289–1297.

    Article  CAS  Google Scholar 

  • Phillips, M.A., Wildung, M.R., Williams, D.C., Hyatt, D.C., and Croteau, R. 2003. cDNA isolation, functional expression, and characterization of (−)-α-pinene synthase and (+)-α-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynthesis. Arch. Biochem. Biophys. 411: 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Raffa, K.F., and Berryman, A.A. 1982. Physiological differences between lodgepole pines, Pinus contorta var. latifolia, resistant and susceptible to the mountain pine beetle, Dendroctonus ponderosae, and associated microorganisms. Environ. Entomol. 11:486–492.

    CAS  Google Scholar 

  • Raffa, K.F., and Berryman, A.A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol. Monogr. 53:27–50.

    Article  Google Scholar 

  • Raffa, K.F., Berryman, A.A., Simasko, J., Teal, W., and Wong, B.I. 1985. Effects of grand fir, Abis grandis, monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae), and its symbiotic fungus. Environ. Entomol. 14:552–556.

    CAS  Google Scholar 

  • Reed, A.N., Hanover, J.W., and Furniss, M.M. 1986. Douglas-fir and western larch: chemical and physical properties in relation to Douglas-fir beetle attack. Tree Physiol. 1:277–287.

    PubMed  CAS  Google Scholar 

  • Reymond, P., and Farmer, E.E. 1998. Jasmonate and salicylate as global signals for plant defense. Curr. Opin. Plant Biol. 1:404–411.

    Article  PubMed  CAS  Google Scholar 

  • Rudinsky, J.A. 1962. Ecology of Scolytidae. Ann. Rev. Entomol. 7:327–348.

    Article  Google Scholar 

  • Ruel, J.J., Ayres, M.P., and Lorio, P.L., Jr. 1998. Loblolly pine responds to mechanical wounding with increased resin flow. Can. J. For. Res. 28:596–602.

    Article  Google Scholar 

  • Schmidt, C.O., Bouwmeester, H.J., de Kraker, J-W., and König, W.A. 1998. Biosynthesis of (+)-and (−)-germacrene D in Solidago canadensis: isolation of two enantioselective germacrene D synthases. Angew. Chem. Int. Ed. 37:1400–1402.

    Article  CAS  Google Scholar 

  • Seybold, S.J., Bohlmann, J., and Raffa, K.F. 2000. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: Evolutionary perspective and synthesis. Can. Entomol. 132:697–753.

    Google Scholar 

  • Seybold, S.J., and Tittiger, C. 2003. Biochemistry and molecular biology of de novo isoprenoid pheromone production in the Scolytidae. Annu. Rev. Entomol. 48:425–453.

    Article  PubMed  CAS  Google Scholar 

  • Sjödin, K., Persson, M., Borg-Karlson, A-K., and Torbjörn H. 1996. Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochemistry 41:439–445.

    Article  Google Scholar 

  • Solheim, H., and Krokene, P. 1998a. Growth and virulence of Ceratocystis rufipenni and three blue-stain fungi isolated from the Douglas-fir beetle. Can. J. Bot. 76:1763–1769.

    Article  Google Scholar 

  • Solheim, H., and Krokene, P. 1998b. Growth and virulence of mountain pine beetle associate blue-stain fungi, Ophiostoma clavigerum and Ophiostoma montium. Can. J. Bot. 76:561–566.

    Article  Google Scholar 

  • Steele, C.L., Crock, J., Bohlmann, J., and Croteau, R. 1998a. Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J. Biol. Chem. 273:2078–2089.

    Article  PubMed  CAS  Google Scholar 

  • Steele, C.L., Katoh, S., Bohlmann, J., and Croteau, R. 1998b. Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpenes, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol. 116:1497–1504.

    Article  PubMed  CAS  Google Scholar 

  • Stofer Vogel, B., Wildung, M.R., Vogel, G., and Croteau, R. 1996. Abietadiene synthase from Grand Fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cylase involved in resin acid biosynthesis. J. Biol. Chem. 271:23262–23268.

    Article  Google Scholar 

  • Sturgeon, K.B., and Mitton, J.B. 1986. Biochemical diversity of ponderosa pine, Pinus ponderosa, and predation by bark beetles (Coleoptera: Scolytidae). J. Econ. Entomol. 79:1064–1068.

    CAS  Google Scholar 

  • Thompson, J.N. 1994. The Coevolutionary Process. Chicago: University of Chicago Press.

    Google Scholar 

  • Trapp, S., and Croteau, R. 2001a. Defensive resin biosynthesis in conifers. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52:689–724.

    Article  CAS  Google Scholar 

  • Trapp, S.C., and Croteau, R.B. 2001b. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832.

    PubMed  CAS  Google Scholar 

  • Tomlin, E.S., Alfaro, R.I., Borden, J.H., and Fangliang, H. 1998. Histological response of resistant and susceptible white spruce to simulated white pine weevil damage. Tree Physiol. 18:21–28.

    PubMed  Google Scholar 

  • Tomlin, E.S., Antonejevic, E., Alfaro, R.I., and Borden J.H. 2000. Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol. 20:1087–1095.

    PubMed  CAS  Google Scholar 

  • van Poecke, R.M.P., Posthumus, M.A., and Dicke, M. 2001. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J. Chem. Ecol. 27:1911–1928.

    Article  PubMed  Google Scholar 

  • Viiri, H., Annila, E., Kitunen, V., and Niemaelä, P. 2001. Induced responses in stilbenes and terpenes in fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees 15:112–122.

    Article  CAS  Google Scholar 

  • Wallin, K.F., and Raffa, K.F. 2000. Influences of host chemical and internal physiology on the multiple steps of postlanding host acceptance behavior of Ips pini (Coleoptera: Scolytidae). Environ. Entomol. 29:442–453.

    Article  CAS  Google Scholar 

  • Werner, R.A. 1995. Toxicity and repellency of 4-allylanisole and monoterpenes from white spruce and tamarack to the spruce beetle and eastern larch beetle (Coleoptera: Scolytidae). Environ. Entomol. 24:372–379.

    CAS  Google Scholar 

  • Whitney, H.S. 1982. Relationships between bark beetles and symbiotic organisms. In Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology, eds. J.B. Mitton, and K.B. Sturgeon, pp. 183–211. Austin, TX: University of Texas Press.

    Google Scholar 

  • Wildung, M.R., and Croteau, R. 1996. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem. 271:9201–9204.

    Article  PubMed  CAS  Google Scholar 

  • Wise, M.L., and Croteau, R. 1999. Monoterpene biosynthesis. In Comprehensive Natural Products Chemistry, ed. D.E. Cane, Vol. 2, pp. 97–154. Oxford: Pergamon.

    Google Scholar 

  • Wood, S.L. 1963. A revision of the bark beetle genus Dendroctonus Erichson (Coleoptera: Scolytidae). Great Basin Nat. 23:1–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Huber, D.P.W., Bohlmann, J. (2006). The Role of Terpene Synthases in the Direct and Indirect Defense of Conifers Against Insect Herbivory and Fungal Pathogens. In: Tuzun, S., Bent, E. (eds) Multigenic and Induced Systemic Resistance in Plants. Springer, Boston, MA . https://doi.org/10.1007/0-387-23266-4_13

Download citation

Publish with us

Policies and ethics