Skip to main content

Biosynthesis and Secretion of Mucins, Especially the MUC2 Mucin, in Relation to Cystic Fibrosis

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 558))

5. Concluding Remarks

The typical CF symptoms with viscous and trapped mucus are still lacking a full explanation. Here we suggest that the CF mucus become sticky and adherent to the epithelial cells by a covalent attachment of MUC2 and MUC5AC. We also suggest that the expression of MUC2 in the lungs could contribute to the CF phenotype. However, there are several unanswered questions before these suggestions can be proved. Among the most urgent ones are to show to what molecules the generated anhydride can attach or if the anhydride only has been hydrolyzed. Once this and other questions have been answered, one can start to address potential therapeutic approaches using recent advances in mucin knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Riordan, J. M. Rommens, B. S. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J. L. Chou, M. L. Drumm, M. C. Iannuzzi, F. S. Collins, and L. C. Tsui, Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA, Science 245, 1066–1072 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. H. Matsui, B. R. Grubb, R. Tarran, S. H. Randell, J. T. Gatzy, C. W. Davis, and R. C. Boucher, Evidence for periciliary liqulid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease, Cell 95, 1005–1015 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. N. Asker, D. Baeckstrom, M. A. B. Axelsson, I. Carlstedt, and G. C. Hansson, The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the ‘insoluble’ mucin of rat small intestine, Biochem. J. 308, 873–880 (1995).

    PubMed  CAS  Google Scholar 

  4. N. Asker, M. A. B. Axelsson, S. O. Olofsson, and G. C. Hansson, Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono-and dimers to the Golgi apparatus, J. Biol. Chem. 273, 18857–18863 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. M. A. B. Axelsson, N. Asker, and G. C. Hansson, O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds, J. Biol. Chem. 273, 18864–18870 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. K. Godl, M. E V. Johansson, H. Karlsson, M. Morgelin, M. E. Lidell, F. J. Olson, J. R. Gum, Y. S. Kim, and G. C. Hansson, The N-termini of the MUC2 mucin form trimers that are held together within a trypsin-resistant core fragment, J. Biol. Chem. 277, 47248–47256 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. M. E. Lidell, M. E. V. Johansson, M. Morgelin, N. Asker, J. R. Gum, Y. S. Kim, and G. C. Hansson, The recombinant C-terminus of the human MUC2 mucin forms dimers in CHO cells and heterodimers with full-length MUC2 in LS 174T cells, Biochem. J. 372, 335–345 (2002).

    Article  Google Scholar 

  8. N. Asker, M. A. B. Axelsson, S. O. Olofsson, and G. C. Hansson, Human MUC5AC mucin dimerizes in the rough endoplasmic reticulum, similarly to the MUC2 mucin, Biochem. J. 335, 381–387 (1998).

    PubMed  CAS  Google Scholar 

  9. I. Carlstedt, A. Herrmann, H. Karlsson, J. K. Sheehan, L. Fransson, and G. C. Hansson, Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine, J. Biol. Chem. 268, 18771–18781 (1993).

    PubMed  CAS  Google Scholar 

  10. A. Herrmann, J. R. Davies, G. Lindell, S. Martensson, N. H. Packer, D. M. Swallow, and I. Carlstedt, Studies on the “Insoluble” glycoprotein complex from human colon, Jou J. Biol. Chem. 274, 15828–15836 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. G. Xu, L. J. Huan, I. A. Khatre, D. Wang, A. Bennic, R. E. F. Fahim, G. Forstner, and J. F. Forstner, cDNA for the carboxyl-terminal region of a rat intestinal mucin-like peptide, J. Biol. Chem. 267, 5401–5407 (1992).

    PubMed  CAS  Google Scholar 

  12. M. E. Lidell, M. E. V. Johansson, and G. C. Hansson, An autocatalytic cleavage in the C-terminus of the human MUC2 mucin occurs at the low pH of the late secretory pathway, J. Biol. Chem. 278, 13944–13951 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. R. R. Parmley and S. J. Gendler, Cystic fibrosis mice lacking Mucl have reduced amounts of intestinal mucus, J. Clinical Invest. 102, 1798–1806 (1998).

    CAS  Google Scholar 

  14. M. Hinojosa-Kurtzberg, M. E. V. Johansson, C. S. Madsen, G. C. Hansson, and S. J. Gendler, Novel MUC1 splice variants contribute to mucin over-expression in CFTR deficient mice, AJP-Gastrointestinal and Liver Physiol. 284, G853–G862 (2003).

    CAS  Google Scholar 

  15. J. D. Li, W. J. Feng, M. Gallup, J. H. Kim, J. Gum, Y. Kim, and C. B. Basbaum, Activation of NF-Kappa-B via a SRC-dependent ras-MAPK-PP90RSK pathway is required for pseudomonas aeruginosa-induced mucin overproduction in epithelial cells, Proc. Natl. Acad. Sci. U.S.A. 95, 5718–5723 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. J. R. Davies, N. Svitacheva, L. Lannefors, R. Kornfalt, and I. Carlstedt, Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions, Biochem. J. 344, 321–330 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. J. D. Li, A. F. Dohrman, M. Gallup, S. Miyata, J. R. Gum, Y. S. Kim, J. A. Nadel, A. Prince, and C. B. Basbaum, Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease, Proc. Natl. Acad. Sci. U.S.A. 94, 967–972 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. C. Wickstrom, C. Christersson, J. R. Davies, and I. Carlstedt, Macromolecular organization of saliva: Identification of insouble MUC5B assemblies and non-mucin proteins in the gel phase, Biochem. J. 351, 421–428 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. R. D. Coakley, B. R. Grubb, A. M. Paradiso, J. T. Gatzy, L. G. Johnson, S. M. Kreda, W. K. Neal, and R. C. Boucher, Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium, Proc. Natl. Acad. Sci. U.S.A. 100, 16083–16088 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Hansson, G.C., Johansson, M.E.V., Lidell, M.E. (2005). Biosynthesis and Secretion of Mucins, Especially the MUC2 Mucin, in Relation to Cystic Fibrosis. In: Schultz, C. (eds) Defects of Secretion in Cystic Fibrosis. Advances in Experimental Medicine and Biology, vol 558. Springer, Boston, MA. https://doi.org/10.1007/0-387-23250-8_12

Download citation

Publish with us

Policies and ethics