Skip to main content

Amyloid Inhibitors and β-Sheet Breakers

  • Chapter
Alzheimer’s Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 38))

Abstract

Compelling evidence indicates that a key pathological event in Alzheimer’s disease is the misfolding and aggregation of normal soluble amyloid-β peptide into β-sheet-rich oligomeric structures which have a neurotoxic activity and ability to form insoluble amyloid deposits that accumulate in the brain. β-sheet breakers constitute a new class of drugs that are designed to specifically bind amyloid-β peptide blocking and/or reversing the misfolding process. In this article we review this approach and summarize the data supporting the view that β-sheet breakers could be serious candidates to combat this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adessi, C., Frossard, M.J., Boissard, C., Fraga, S., Bieler, S., Ruckle, T., Vilbois, F., Robinson, S.M., Mutter, M., Banks, W.A., and Soto, C., 2003, Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer’s disease. J. Biol. Chem. 278: 13905–13911.

    Article  PubMed  CAS  Google Scholar 

  • Adessi, C. and Soto, C., 2002, Converting a peptide into a drug: Strategies to improve stability and bioavailability. Curr. Med. Chem. 9: 963–978.

    Article  PubMed  CAS  Google Scholar 

  • Allsop, D., Gibson G., Martin, I.K., Moore S., Turnbull, S., and Twyman, L.J., 2001, 3-p-Toluoyl-2-[4′-(3-diethylaminopropoxy)-phenyl]-benzofuran and 2-[4′-(3-diethylaminopropoxy)-phenyl]-benzofuran do not act as surfactants or micelles when inhibiting the aggregation of beta-amyloid peptide. Bioorg. Med. Chem. Lett. 11: 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Caughey, B. and Lansbury, P.T., 2003, Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26: 267–298.

    Article  PubMed  CAS  Google Scholar 

  • Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J.T., Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L., and Bush, A.L, 2001, Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30: 665–676.

    Article  PubMed  CAS  Google Scholar 

  • De Felice, F.G., Houzel, J.C., Garcia-Abreu, J., Louzada, P.R., Jr., Afonso, R.C., Meirelles, M.N., Lent, R., Neto, V.M., and Ferreira, S.T., 2001, Inhibition of Alzheimer’s disease beta-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer’s therapy. FASEB J. 15: 1297–1299.

    PubMed  Google Scholar 

  • Dewachter, I., Van Dorpe, J., Smeijers, L., Gilis, M., Kuiperi, C., Laenen, I., Caluwaerts, N., Moechars, D., Checler, F., Vanderstichele, H., and Van Leuven, F., 2000, Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilinl. J. Neurosci. 20: 6452–6458.

    PubMed  CAS  Google Scholar 

  • Findeis, M.A., 2002, Peptide inhibitors of beta amyloid aggregation. Curr. Top. Med. Chem. 2: 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Findeis, M.A., Lee, J.J., Kelley, M., Wakefield, J.D., Zhang, M.H., Chin, J., Kubasek, W., and Molineaux, S.M., 2001, Characterization of cholyl-leu-val-phe-phe-ala-OH as an inhibitor of amyloid beta-peptide polymerization. Amyloid. 8: 231–241.

    PubMed  CAS  Google Scholar 

  • Findeis, M.A., Musso, G.M., Arico-Muendel, C.C., Benjamin, H.W., Hundal, A.M., Lee, J.J., Chin, J., Kelley, M., Wakefield, J., Hayward, N.J., and Molineaux, S.M., 1999, Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry 38: 6791–6800.

    Article  PubMed  CAS  Google Scholar 

  • Forloni, G., Colombo, L., Girola, L., Tagliavini, F., and Salmona, M., 2001, Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett. 487: 404–407.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, P.E., Yang, D.S., Yu, G., Levesque, L., Nishimura, M., Arawaka, S., Serpell, L.C., Rogaeva, E., and George-Hyslop, P., 2000, Presenilin structure, function and role in Alzheimer disease. Biochim. Biophys. Acta 1502: 1–15.

    PubMed  CAS  Google Scholar 

  • Gervais, F., Chalifour, R., Garceau, D., Kong, X., Laurin J., Mclaughlin, R., Morissette, C., and Paquette, J., 2001, Glycosaminoglycan mimetics: a therapeutic approach to cerebral amyloid angiopathy. Amyloid. 8Suppl 1: 28–35.

    PubMed  CAS  Google Scholar 

  • Ghanta, J., Shen, C.L., Kiessling, L.L., and Murphy, R.M., 1996, A strategy for designing inhibitors of beta-amyloid toxicity. J. Biol. Chem. 271: 29525–29528.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, D.J., Sciarretta, K.L., and Meredith, S.C., 2001, Inhibition of beta-amyloid(40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry 40: 8237–8245.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., Duff, K., Hardy, K.G., Perez-Tur, J., and Hutton, M., 1998, Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau. Nat. Neurosci. 1: 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C.L., and Beyreuther, K., 1992, Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease beta A4 peptides. J. Mol. Biol. 228: 460–473.

    Article  PubMed  CAS  Google Scholar 

  • Hosoda, T., Nakajima, H., and Honjo, H., 2001, Estrogen protects neuronal cells from amyloid beta-induced apoptotic cell death. Nenroreport 12: 1965–1970.

    Article  CAS  Google Scholar 

  • Hughes, E., Burke R.M., and Doig, A.J., 2000, Inhibition of toxicity in the beta-amyloid peptide fragment beta-(25—35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J. Biol. Chem. 275: 25109–25115.

    Article  PubMed  CAS  Google Scholar 

  • Kapurniotu, A., Buck, A., Weber, M., Schmauder, A., Hirsch, T., Bernhagen, J., and Tatarek-Nossol, M., 2003, Conformational restriction via cyclization in beta-amyloid peptide Abeta(l–28) leads to an inhibitor of Abeta(l–28) amyloidogenesis and cytotoxicity. Chem. Biol. 10: 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C.A. and Berg, J.M., 1993, Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature 362: 270.

    Google Scholar 

  • Kisilevsky, R., Lemieux, L.J., Fraser, P.E., Kong, X., Hultin, P.G., and Szarek, W.A., 1995, Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat. Med. 1: 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., Wals, P., Zhang, C., Finch, C.E., Krafft, G.A., and Klein, W.L., 1998, Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95: 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G.P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., Tran, T., Ubeda, O., Ashe, K.H., Frautschy, S.A., and Cole, G.M., 2000, Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 20: 5709–5714.

    PubMed  CAS  Google Scholar 

  • Lorenzo, A. and Yankner, B.A., 1994, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 91: 12243–12247.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D.M., 1989, Cerebral amyloidosis, ageing and Alzheimer’s disease; a contribution from studies on Down’s syndrome. Neurobiol. Aging 10: 397–399.

    Article  PubMed  CAS  Google Scholar 

  • Mason, J.M., Kokkoni, N., Stott, K., and Doig, A.J., 2003, Design strategies for anti-amyloid agents. Curr. Opin. Struct Biol. 13: 526–532.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, E.G. and McGeer, P.L., 1998, The importance of inflammatory mechanisms in Alzheimer disease. Exp. Gerontol. 33: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Merlini, G., Ascari, E., Amboldi, N., Bellotti, V., Arbustini, E., Perfetti, V., Ferrari, M., Zorzoli, I., Marinone, M.G., and Garini, P., 1995, Interaction of the anthracycline 4′-iodo-4′-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc. Natl. Acad. Sci. USA 92: 2959–2963.

    Article  PubMed  CAS  Google Scholar 

  • Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., Tesseur, I., Spittaels, K., Haute, C.V., Checler, F., Godaux, E., Cordell, B., and Van Leuven, F., 1999, Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274: 6483–6492.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G.J., 1994, Designing peptide mimetics, Trends Pharmacol. Sci. 15: 124–129.

    Article  PubMed  CAS  Google Scholar 

  • Nakagami, Y., Nishimura, S., Murasugi, T., Kaneko, I., Meguro, M., Marumoto, S., Kogen, H., Koyama, K., and Oda, T., 2002, A novel beta-sheet breaker, RS-0406, reverses amyloid beta-induced cytotoxicity and impairment of long-term potentiation in vitro. Br. J. Pharmacol. 137: 676–682.

    Article  PubMed  CAS  Google Scholar 

  • Pallitto, M.M., Ghanta, J., Heinzelman, P., Kiessling, L.L., and Murphy, R.M., 1999, Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry 38: 3570–3578.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla, M., Bozner, P., Soto, C., Shao, H., Robakis, N.K., Zagorski, M., Frangione, B., and Ghiso, J., 1998, Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem. 273: 7185–7188.

    Article  PubMed  CAS  Google Scholar 

  • Permanne, B., Adessi, C., Fraga, S., Frossard, M.J., Saborio, G.P., and Soto, C., 2002a, Are beta-sheet breaker peptides dissolving the therapeutic problem of Alzheimer’s disease? J. Neural Transm. Suppl 293–301.

    Google Scholar 

  • Permanne, B., Adessi, C., Saborio, G.P., Fraga, S., Frossard, M.J., Van Dorpe, J., Dewachter, I., Banks, W.A., Van Leuven, F., and Soto, C., 2002b, Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a beta-sheet breaker peptide. FASEB J. 16: 860–862.

    PubMed  CAS  Google Scholar 

  • Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., 1993, Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13: 1676–1687.

    PubMed  CAS  Google Scholar 

  • Price, D.L., Tanzi, R.E., Borchelt, D.R., and Sisodia, S.S., 1998, Alzheimer’s disease: genetic studies and transgenic models. Anna. Rev. Genet. 32: 461–493.

    Article  CAS  Google Scholar 

  • Salomon, A.R., Marcinowski, K.J., Friedland, R.P., and Zagorski, M.G., 1996, Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry 35: 13568–13578.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J., 1997, Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275: 630–631.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J., 2000a, The genetics and molecular pathology of Alzheimer’s disease: roles of amyloid and the presenilins. Neurol. Clin. 18: 903–922.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J., 2000b, The origins of Alzheimer disease-A is for amyloid. Jama: Journal of the American Medical Association 283: 1615–1617.

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson, E.M., Permanne, B., Soto, C., Wisniewski, T., and Frangione, B., 2000, In vivo reversal of amyloid-beta lesions in rat brain. J. Nenropathol. Exp. Neurol. 59: 11–17.

    CAS  Google Scholar 

  • Soto, C., 1999, Plaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease. Mol. Med. Today 5: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., 2003, Unfolding the role of Protein Misfolding in Neurodegenerative Diseases. Nature Rev. Neurosci. 4: 49–60.

    Article  CAS  Google Scholar 

  • Soto, C., Branes, M.C., Alvarez, J., and Inestrosa, N.C., 1994, Structural determinants of the Alzheimer’s amyloid beta-peptide. J. Neurochem. 63: 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Castano, E.M., Frangione, B., and Inestrosa, N.C., 1995, The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J. Biol. Chem. 270: 3063–3067.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Kindy, M.S., Baumann, M., and Frangione, B., 1996, Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem. Biophys. Res. Commun. 226: 672–680.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Sigurdsson, E.M., Morelli, L., Kumar, R.A., Castano, E.M., and Frangione, B., 1998, Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nature Med. 4: 822–826.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R.D., 1994, Neuropathological changes in Alzheimer disease. Prog. Brain Res. 101: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Tjernberg, L.O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A.R., Thyberg, J., Terenius, L., and Nordstedt, C., 1996, Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271: 8545–8548.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama, T., Asano, S., Suwa, Y., Morita, T., Kataoka, K., Mori, H., and Endo, N., 1994, Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem. Biophys. Res. Commun. 204: 76–83.

    Article  PubMed  CAS  Google Scholar 

  • Van Leuven, F., 2000, Single and multiple transgenic mice as models for Alzheimer’s disease. Progress in Neurobiology 61: 305–312.

    Article  PubMed  Google Scholar 

  • Walsh, D.M., Hartley, D., Kusumoto, Y., Fezoui, Y., Condrom, M.M., Lomakin, A., Benedek, G.B., Selkoe, D.J., and Teplow, D.B., 1999, Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274: 25945–25952.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., Rowan, M.J., and Selkoe, D.J., 2002, Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30: 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Wood, S.J., MacKenzie, L., Maleeff, B., Hurle, M.R., and Wetzel, R., 1996, Selective inhibition of Aβ fibril formation. J. Biol. Chem. 271: 4086–4092.

    Article  PubMed  CAS  Google Scholar 

  • Wood, S.J., Wetzel, R., Martin, J.D., and Hurle, M.R., 1995, Prolines and amyloidogenicity in fragments of the Alzheimer’s peptide beta/A4. Biochemistry 34: 724–730.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B.A., 1996, Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16: 921–932.

    Article  PubMed  CAS  Google Scholar 

  • Younkin, S.G., 1995, Evidence that Aβ 42 is the real culprit in Alzheimer’s disease. Ann. Neurol. 37: 287–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Soto, C., Estrada, L. (2005). Amyloid Inhibitors and β-Sheet Breakers. In: Harris, J.R., Fahrenholz, F. (eds) Alzheimer’s Disease. Subcellular Biochemistry, vol 38. Springer, Boston, MA . https://doi.org/10.1007/0-387-23226-5_18

Download citation

Publish with us

Policies and ethics