Skip to main content

Acetylcholinesterase Interaction with Alzheimer Amyloid β

  • Chapter
Alzheimer’s Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 38))

Abstract

Acetylcholinesterase (AChE) is an enzyme involved in cholinergic and non-cholinergic functions in both the central and peripheral nervous system, most of the AChE is found as a tetrameric form bound to neuronal membranes. Early cytochemical studies have demonstrated that the AChE associated with senile plaques differs enzymatically from the AChE associated with neurons in several respects. Biochemical studies indicated that AChE induces amyloid fibril formation and form highly toxic AChE-Aβ complexes. A 3.5 kDa peptide containing a tryptophan of the enzyme peripheral binding site (PAS) mimics the effect of the whole enzyme on amyloid formation. The neurotoxicity induced by AChE-Aβ complexes indicated that they trigger more neurodegeneration than those of the Aβ peptide alone, both in vitro (hippocampal neurons) and in vivo (rats injected in the dorsal hippocampus as a model of Alzheimer). The fact that AChE is able to accelerate amyloid formation and that such effect is sensitive to drugs that block. PAS of the enzyme, suggests that specific and new AChE inhibitors may well provide an attractive possibility for treating Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarcón, R., 1999, Studies of the association and enzymatic behaviour of the Acetylcholinesterase present in the amyloid β-peptide fibers. M.Sc. Thesis, Dept. Biochemistry, University of Chile.

    Google Scholar 

  • Alvarez, A., Opazo, C., Alarcón, R., Garrido, J., and Inestrosa, N.C., 1997, Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol. 272: 348–361.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, A., Alarcón, R., Opazo, C., Campos, E.O., Muñoz, F.J, Calderón F.H., Dajas, F., Gentry, M.K., Bhupendra, P. Doctor, De Mello, F.G., and Inestrosa, N.C., 1998, Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J. Neurosci. 18:3213–3223.

    PubMed  CAS  Google Scholar 

  • Alvarez, A., Godoy, J.A., Mullendorff, K., Olivares, G.H., Bronfman, M., and Inestrosa, N.C., 2004, Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons. Exp. Cell Res. (In press).

    Google Scholar 

  • Atack, J.R., Perry, E.K., Bonham, J.R., Perry, R.H., Tomlinson, B.E., Candy, J., Blessed, G., and Fairbairn, A., 1983, Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci. Lett. 40: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Beeri, R., Andres, C., Lev-Lehman, E., Timberg, R., Huberman, T., Shani, M., and Soreq, H., 1995, Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr. Biol. 9: 1063–1071.

    Article  Google Scholar 

  • Bigbee, J.W., Sharma, K.V., Chan, E.L., and Bogler, O., 2000, Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res. 861: 354–362.

    Article  PubMed  CAS  Google Scholar 

  • Bronfman, F.C., Fernández, H.L., and Inestrosa, N.C., 1996, Amyloid precursor protein fragment and acetylcholinesterase increase with cell confluence and differentiation in a neuronal cell line. Exp. Cell Res. 229: 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Calderón, F.H., von Bernhardi, R., De Ferrari, G., Luza, S., Aldunate, R., and Inestrosa, N.C., 1998, Toxic effects of acetylcholinesterase on neuronal and glial-like cells in vitro. Mol. Psychiatry 3:247–255.

    Article  PubMed  Google Scholar 

  • Chacón, M.A., Reyes, A.E., and Inestrosa, N.C., 2003, Acetylcholinesterase induces neuronal cell loss, astrocyte hypertrophy and behavioral deficits in mammalian hippocampus. J. Neurochem. 87: 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, O., Erb, C., Ginzberg, D., Pollak, Y., Seidman, S., Shoham, S., Yirmiya, R., and Soreq, H., 2002, Neuronal overexpression of readthrough acetylcholinesterase is associated with antisense-supressible behavioral impairments. Mol. Psychiatry 7: 874–885.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, O., Kronman, C., Chitlaru, T., Ordentlich, A., Velan, B., and Shafferman A., 2001, Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity. Biochem. J. 357: 795–802.

    Article  PubMed  CAS  Google Scholar 

  • Colombres, M., Sagal, J.P., and Inestrosa, N.C., 2004, An Overview of the Current and Novel Drugs for Alzheimer’s Disease with particular reference to anti-cholinesterase compounds. Curr. Pharmacol. Design, In Press.

    Google Scholar 

  • Cottingham, M.G., Hollinshead, M.S., and Vaux, D.J., 2002, Amyloid fibril formation by a synthetic peptide from a region of human acetylcholinesterase that is homologous to the Alzheimer’s amyloid-β peptide. Biochemistry 41: 13539–13547.

    Article  PubMed  CAS  Google Scholar 

  • Day, T., and Greenfield, S.A., 2003, A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms. Exp. Brain Res. 153: 334–342.

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari, G.V., and Inestrosa, N.C., 2000, Wnt signaling function in Alzheimer’s disease. Brain Res. Rev. 33: 1–12.

    Article  PubMed  Google Scholar 

  • De Ferrari, G.V., Canales, M.A., Shin, I., Weiner, L.M., Silman, I., and Inestrosa, N.C., 2001, A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 40: 10447–10457.

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari, G.V., Chacón, M.A., Barría, M.I., Garrido, J.L., Godoy, J.A., Olivares, G., Reyes, A.E., Alvarez, A., Bronfman, M., and Inestrosa, N.C., 2003, Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol. Psychiatry 8: 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, E.B., Siek, G.C., MacCallum, R.D., Bird, E.D., Volicer, L., and Marquis, J.K., 1986, Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann. Nenrol. 19: 246–252.

    Article  CAS  Google Scholar 

  • Geula, C., and Mesulam, M.M., 1989, Special properties of cholinesterase in the cerebral cortex of Alzheimer’s disease. Brain Res. 498: 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Geula, C., and Mesulam, M.M., 1994, Cholinergic systems and related neuropathological predilection patterns in Alzheimer disease. In: Alzheimer Disease (Terry, R.D., Katzman, R. and Bick, K.L., eds.), pp. 263–291, Raven Press, New York.

    Google Scholar 

  • Greenfield, S., and Vaux, D.J., 2002. Parkinson’s disease, Alzheimer’s disease and motor neurone disease: identifying a common mechanism. Neurosci. 113: 485–492.

    Article  CAS  Google Scholar 

  • Grisaru, D., Sternfeld, M., Eldor, A., Glick, D., and Soreq, H., 1999, Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem. 264: 672-686.

    Google Scholar 

  • Hyman, B.T., Van Horsen, G.W., Damasio, A.R., and Barnes, C.L., 1984, Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa, N.C., Roberts, W.L., Marshall, T.D., and Rosenberry, T.L., 1987), Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262: 4441–4444.

    PubMed  CAS  Google Scholar 

  • Inestrosa, N.C., and Perelman, A., 1989, Distribution and anchoring of the molecular forms of acetylcholinesterase. Trends Pharmacol. Sci. 10: 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa, N.C., Alvarez, A., Perez, C.A., Moreno, R.D., Vicente, M., Linker, C., Casanueva, O.I., Soto, C., and Garrido, J., 1996, Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16: 881–891.

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa, N.C., Alvarez, A., Garrido, J., Calderón, F., Bronfman, F.C., Dajas, F., Gentry, M.K., and Doctor, B.P., 1997, Acetylcholinesterase promotes Alzheimer β-amyloid Fibril Formation. In: Alzheimer’s Disease: Biology, Diagnosis and Therapeutics, (K. Iqbal, B. Winblad, T. Nishimura, M. Takeda, H.M. Wisniewski, Eds.), pp. 499–508, J. Wiley & Sons Ltd., London, U.K.

    Google Scholar 

  • Inestrosa, N.C., and Alarcón, R., 1998, Molecular interactions of acetylcholinesterase with senile plaques. J. Physiol. (Paris) 92: 341–344.

    Article  CAS  Google Scholar 

  • Inestrosa, N.C., and Reyes, A.E., 1998, Acetylcholinesterase induces amyloid formation and increases neurotoxicity of Alzheimer’s fibrils. Neurobiol Aging 19: S44 (Abst).

    Google Scholar 

  • Inestrosa, N.C., De Ferrari, G.V., Garrido, J.L., Alvarez, A., Olivares, G.H., Barría, M.I., Bronfman, M., and Chacon, M.A., 2002, Wnt signaling involvement in β-amyloid-dependent neurodegeneration. Neurochem. Int. 41: 341–344.

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa, N.C., De Ferrari G.V., Opazo, C., and Alvarez A., 2004a, Neurodegenerative processes in Alzheimer’s disease: role of Aβ-AChE complexes and Wnt signaling. In: XIth International Symposium on Cholinergic Mechanisms, (Silman, I., Soreq, H. Fisher, A., and Anglister L, eds.), St. Moritz, Switzerland, Ch. 51 (In Press).

    Google Scholar 

  • Inestrosa, N.C., Urra, M.S., and Colombres, C., 2004b, Acetylcholinesterase (AChE)-amyloid-β-peptide complexes in Alzheimer’s Disease. The Wnt signaling pathway connection. Curr. Alzheimer Res. (In Press).

    Google Scholar 

  • Jarrett, J.T., and Lansbury, P.T. Jr., 1992, Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 31: 12345–12352.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G., and Moore, S.W., 1999, The adhesion function on acetylcholinesterase is located at the peripheral anionic site. Biochem. Biophys. Res. Commun. 258: 758–762.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R.N., Kroon, S.N., Grahovac, I., and Perry, G., 1992, Acetylcholinesterase and its association with heparan sulphate proteoglycans in cortical amyloid deposits of Alzheimer’s disease. Neurosci. 51: 177–184.

    Article  CAS  Google Scholar 

  • Kasa, P., Rakonczay, Z., and Gulya, K., 1997, The cholinergic system in Alzheimer’s disease. Prog. Neurobiol. 52: 511–535.

    Article  PubMed  CAS  Google Scholar 

  • Kronman, C., Velan, B., Gozes, Y., Leitner, M., Flashner, Y., Lazar, A., Marcus, D., Sery, T., Papier, Y., Grosfeld, H., Cohen, S., and Shafferman, A., 1992, Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene 121: 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Layer, P.G., Weikert, T., and Alber, R., 1993, Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res. 273: 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Massoulie, J., Pezzementi, L., Bon, S, Krejci, E., and Vallette, F.M., 1993, Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41: 31–91.

    Article  PubMed  CAS  Google Scholar 

  • Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K., 1985, Amyloid plaque protein in Alzheimer disease and Down’s syndrome. Proc. Natl. Acad. Sci. USA 82: 4245–4249.

    Article  PubMed  CAS  Google Scholar 

  • Muñoz, F.J., and Inestrosa, N.C.,1999, Neurotoxicity of acetylcholinesterase-amyloid β-peptide aggregates is dependent on the type of Aβ-peptide and the AChE concentration present in the complexes. FEBS Lett. 450: 205–209.

    Article  PubMed  Google Scholar 

  • Muñoz, F.J., Aldunate, R., and Inestrosa, N.C., 1999, Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. NeuroReport 10: 3621–3625.

    Article  PubMed  Google Scholar 

  • Muñoz, F.J., Opazo, C., Gil-Gómez, G., Tapia, G., Fernández, V., Valverde, M.A., and Inestrosa, N.C., 2002, Vitamin E but not 17β-Estradiol protects against vascular toxicity induced by β-amyloid wild-type and the Dutch amyloid variant. J. Neurosci. 22: 3081–3089.

    PubMed  Google Scholar 

  • Opazo, C., and Inestrosa, N.C., 1998, Crosslinking of amyloid-β peptide to brain acetylcholinesterase. Mol. Chem. Neuropathol. 33: 39–49.

    PubMed  CAS  Google Scholar 

  • Rees, T., Hammond, P.I., Soreq, H., Younkin, S., and Brimijoin, S., 2003, Acetylcholinesterase promotes β-amyloid plaques in cerebral cortex. Neurobiol. Aging 24: 777–787.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, A.E., Pérez, D.R., Alvarez, A., Garrido, J., Gentry, M.K., Doctor, B.P., and Inestrosa, N.C., 1997, A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem. Biophys. Res. Commun. 232: 652–655.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, A.E. Chacón, M.A., Dinamarca, M.C., Cerpa, W., Morgan, C., and Inestrosa, N.C., 2004, Acetylcholinesterase-Aβ complexes are more toxic than Aβ fibrils in rat hippocampus: Effect on rat β-amyloid aggregation, laminin expression, reactive astrocytosis and neuronal cell loss. Am. J. Pathol. (In Press).

    Google Scholar 

  • Roher, A. E., Wolfe, D., Palutke, M., and Kukurga, D., 1986, Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc. Natl. Acad. Sci. USA 83: 2662–2666.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J., 2001, Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 8: 741–766.

    Google Scholar 

  • Shin, I., Silman, I., and Weiner, L.M., 1996, Interaction of partially unfolded forms of Torpedo acetylcholinesterase with liposomes. Protein Sci. 5: 42–51.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Brañes, M.C., Alvarez, J., and Inestrosa, N.C., 1994, Structural determinants of the Alzheimer’s amyloid β-peptide. J. Neurochem. 63: 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Castaño, E., Frangione, B., and Inestrosa, N.C., 1995, The α-helical to β-strand transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation. J. Biol. Chem. 270: 3063–3067.

    Article  PubMed  CAS  Google Scholar 

  • Talesa, V.N., 2001, Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Devel. 122: 1961–1969.

    Article  CAS  Google Scholar 

  • Tumiatti, V., Rosini, M., Bartolini, M., Cavalli, A., Marucci, G., Andrisano, V., Angeli, P., Banzi, R., Minarini, A., Recanatini, M., and Melchiorre, C., 2003, Structure-Activity Relationships of Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone. 2. Role of the Substituents on the Phenyl Ring and Nitrogen Atoms of Caproctamine. J. Med. Chem. 46: 954–966.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, J., Meier-Ruge, W., Probst, A., Meier, E., and Ipsen, S., 1990, Senile plaques: staining for acetylcholinesterase and A4 protein. A comparative study in the hippocampus and entorhinal cortex. Ascta Neuropathol. 80: 624–628.

    Article  CAS  Google Scholar 

  • Younkin, S.G., Goodridge, B., Katz, J., Lockett, G., Nafziger, D., Usiak, M.F., and Younkin, L.H., 1986, Molecular forms of acetylcholinesterase in Alzheimer’s disease. Fed. Proc. 45: 2982–2988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Inestrosa, N.C., Sagal, J.P., Colombres, M. (2005). Acetylcholinesterase Interaction with Alzheimer Amyloid β. In: Harris, J.R., Fahrenholz, F. (eds) Alzheimer’s Disease. Subcellular Biochemistry, vol 38. Springer, Boston, MA . https://doi.org/10.1007/0-387-23226-5_15

Download citation

Publish with us

Policies and ethics