Skip to main content

Soft Decoding in Optical Systems: Turbo Product Codes vs. LDPC Codes

  • Chapter
Optical Communication Theory and Techniques

Abstract:

We consider the use of two classes of forward error correction (FEC) codes (concatenated codes with interleaver and LDPC codes) in optical communication systems. Soft iterative decoding is applied to both class of codes. In the simulations, the optimum log-likelihood ratio to be provided to the soft decoder in the optical channel environment is evaluated. Simulation results refer to practical turbo-product and LDPC codes, and encompass the effect of quantization on the log-likelihood ratio. The results show that LDPC codes give better results than turbo product codes. Moreover, they turn out to be more robust to quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271, Oct. 1996.

    Google Scholar 

  2. S. Benedetto et al., “A soft-input soft-output APP module for iterative decoding of concatenated codes”, IEEE Comm. Lett., vol. 1, n. 1, pp. 22–24, Jan. 1997.

    Google Scholar 

  3. R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Vasic, I.B. Djordjevic, and R.K. Kostuk, “Low-density parity check codes and iterative decoding for long-haul optical communication systems,” J. Lightwave Technol., vol. 21, no. 2, pp. 438–446, Feb. 2003.

    Article  Google Scholar 

  5. T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 559–618, Feb. 2001.

    Google Scholar 

  6. G. Bosco, G. Montorsi, and S. Benedetto, “Soft decoding in optical systems”, IEEE Trans. Commun., vol. 51, no. 8, pp. 1258–1265, Aug. 2003.

    Google Scholar 

  7. O. Ait Sab and V. Lemaire, “Block turbo code performance for long-haul DWDM optical transmission systems”, in Proc. OFC 2000, pp. ThS5–1–TuS5–4, Mar. 2000.

    Google Scholar 

  8. F. Zarkeshvari and A. H. Banihashemi, “On implementation of min-sum algorithm for decoding low-density parity-check (LDPC) codes,” in Proc. GLOBECOM’ 02, vol. 2, pp. 1349–1353, 17–21 Nov. 2002.

    Google Scholar 

  9. L. Kazovsky, S. Benedetto, and A. Willner, Optical fiber communication systems, London: Artech House, 1996.

    Google Scholar 

  10. S. Benedetto and E. Biglieri, Principles of digital transmission: with wireless applications, New York: Kluwer Academic Publishers, 1999.

    Google Scholar 

  11. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input soft-output modules for the construction and distributed iterative decoding of code networks”, European Transactions on Telecommunications, invited paper, March-April 1998.

    Google Scholar 

  12. R. Pyndiah, “Near-optimum decoding of product codes: block turbo codes,” IEEE Trans. Inform. Theory, vol. 46, no. 8, pp. 1003–1010, Aug. 1998.

    MATH  Google Scholar 

  13. D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Trans. Inform. Theory, vol. 18, no. 1, pp. 170–181, Jan. 1972.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638–56. Feb. 2001.

    MathSciNet  Google Scholar 

  15. Li Ping, W.K. Leung, and Nam Phamdo, “Low density parity check codes with semi-random parity check matrix,” Electronics Letters, vol. 35, no. 1, pp. 38–39, Jan. 1999.

    Google Scholar 

  16. Xiao-Yu Hu, E. Eleftheriou, and D.M. Arnold, “Progressive edge-growth Tanner graphs,” in Proc. GLOBECOM’ 01, vol. 2, pp. 995–1001, 25-29 Nov. 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc. Boston

About this chapter

Cite this chapter

Bosco, G. (2005). Soft Decoding in Optical Systems: Turbo Product Codes vs. LDPC Codes. In: Forestieri, E. (eds) Optical Communication Theory and Techniques. Springer, Boston, MA. https://doi.org/10.1007/0-387-23136-6_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-23136-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23132-7

  • Online ISBN: 978-0-387-23136-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics