Skip to main content

Proteases and Neuronal Plasticity

  • Chapter
Proteases In The Brain

Part of the book series: Proteases In Biology and Disease ((PBAD,volume 3))

  • 382 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abel IT, Kandel E, 1998, Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Res Rev. 26:360–378.

    Article  CAS  PubMed  Google Scholar 

  • Adams JC, Watt FM, 1993, Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198.

    CAS  PubMed  Google Scholar 

  • Alexinsky T, Przybyslawski S, Rose SP, Sara S, 1995, Antibodies to chick NCAM induce delayed amnesia in the rat. Int Behav Neurosci Conf. 4:53.

    Google Scholar 

  • Alford S, Frenguelli BG, JSchofield JG, Collingridge GL, 1993, Characterization of Ca2+ signals induced in hippocampal CA1 neurons by the synaptic activation of NMDA receptors. J Physiol (Lond.) 469:693–716.

    CAS  Google Scholar 

  • Aniksztejn L, Ben-Ari Y, 1991, Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349:67–69.

    Article  CAS  PubMed  Google Scholar 

  • Anokhin KV, Tiunova AA, Rose SR, 2002, Reminder effects —reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci. 15:1759–1765.

    Article  PubMed  Google Scholar 

  • Aoki C, Siekevitz P, 1988, Plasticity in brain development.Sci Am. 259:34–42.

    Google Scholar 

  • Arami S, Jucker M, Schachner M, Welzl H, 1996, The effect of continuous intraventricular infusion of L1 and NCAM antibodies on spatial learning in rats. Behav Brain Res. 81: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH, 2000, Role for Matrix Metalloproteinase 9 after focal cerebral ischemia: Effects of Gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab. 20:1681–1689.

    CAS  PubMed  Google Scholar 

  • Backstrom JR, Giselle PL, Cullen MJ, Tökés ZA 1996, Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-ß peptide (1-40). J Neurosci. 16:7910–7919.

    CAS  PubMed  Google Scholar 

  • Backstrom JR, Miller CA, Tökés ZA 1992, Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: identification of calcium-dependent metalloproteinases from the hippocampus. J Neurochem. 58:983–992.

    CAS  PubMed  Google Scholar 

  • Backstrom JR, Tökés AZ 1995, The 84 kDa form of human matrix metalloproteinase-9 (MMP-9) degrades substance P and gelatin. J Neurochem. 64:1312–1318.

    CAS  PubMed  Google Scholar 

  • Bahr B, 1995, Long-term hippocampal slices: A model system for investigating synaptic mechanisms and pathologic processes. J Neurosci Res. 42:294–305.

    Article  CAS  PubMed  Google Scholar 

  • Bahr B, Staubli U, Xiao P, Chun J, Esteban E, Lynch G, 1997, Arg-Gly-Asp-Ser selective adhesion and the stabilization of long-term potentiation: pharmacological studies and the characterization of a candidate matrix receptor. J Neurosci. 17:1320–1329.

    CAS  PubMed  Google Scholar 

  • Bailey CH, Chen M, Keller F, Kandel ER, 1992, Serotonin-mediated endocytosis of ap-CAM: an early step of learning-related snaptic growth in Aplysia. Science 256:645–659.

    CAS  PubMed  Google Scholar 

  • Bailey CH, Kandel ER, 1993, Structural changes accompanying memory storage. Annu Rev Physiol. 55:397–426.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RJ, Fazeli MS, Doherty P, Walsh FS, 1996, Elucidation of the molecular actions of NCAM and structurally related cell adhesion molecules. J Celchem. 61:502–513.

    CAS  Google Scholar 

  • Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER, 1998, Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy pathway. Neuron 21:813–825.

    Article  CAS  PubMed  Google Scholar 

  • Barnes CA, 1979, Memory deficits associated with senescence: a neuro-physiological and behavioral study in the rat. J Comp Physiol Psych. 93:74–104.

    CAS  Google Scholar 

  • Barth AI, Nathke IS, Nelson WJ, 1997, Cadherins, catenins, and APC protein: interplay between cytoskeletal complexes, and signaling pathways. Curr Opin Cell Biol 9:683–690.

    Article  CAS  PubMed  Google Scholar 

  • Bauer EP, Schafe GE, LeDoux JE, 2002, NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdale. J Neurosci. 22:5239–5249.

    CAS  PubMed  Google Scholar 

  • Benington JH, Frank MG, 2003, Cellular and molecular connections between sleep and synaptic plasticity. Prog Neurobiol. 69:71–101.

    Article  CAS  PubMed  Google Scholar 

  • Bignami A, Huxley M, Dahl D, 1993, Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat Embryol. 188:419–433.

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL, 1993, A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361:31–39.

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Dolphin AC, Feasey KJ, 1984, Elevated calcium induces a long-lasting potentiation of commissural responses in hippocampal CA3 cells of the rat in vivo. J Physiol. 350:65p.

    Google Scholar 

  • Bliss TV, Gardner-Medwin AR, 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path. J Physiol. 232:357–374.

    CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T, 1973, Long-term potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J Physiol. 232: 331–356.

    CAS  PubMed  Google Scholar 

  • Bock E, Edvardsen K, Gibson A, Linnemann D, Lyles JM, Nybroe O, 1987, Characterization of soluble forms of NCAM. FEBS Letters 225:33–36.

    Article  CAS  PubMed  Google Scholar 

  • Bode W, Fernandez-Catalan C, Tschesche H, Grams F, Nagase H, Maskos K, 1999, Structural properties of matrix metalloproteinases. Cell Mol Life Sci. 55:639–652.

    CAS  PubMed  Google Scholar 

  • Borroni AM, Fichtenholtz H, Woodside BL, Teyler TJ, 2000, Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory. J Neurosci. 20:9272–9276.

    CAS  PubMed  Google Scholar 

  • Bortolotto ZA, Bashir ZI, Davies CH, Taira T, Kaila K, Collingridge GL, 1995, Studies on the role of metabotropic glutamate receptors in long-term potentiation: Some methodological considerations. J Neurosci Meth. 59:19–24.

    CAS  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ, 1994, Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68.

    Article  CAS  PubMed  Google Scholar 

  • Burden-Gulley SM, Pendergast M, Lemmon V, 1997, The role of cell adhesion molecule L1 in axonal extension, growth cone motility, and signal transduction. Cell Tissue Res. 290: 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Cajal SR, 1928, Degeneration and Regeneration of the Nervous System. Oxford University Press.

    Google Scholar 

  • Cajal SR, 1894, La fine structure des centres nerveux. Proc R Soc Lond 55:444–468.

    Google Scholar 

  • Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, DeVos R, van den Ord JJ, Collen D, Mulligan RC, 1994, Physiological consequences of loss of plasminogen activator gene function in mice. Nature 367:419–424.

    Google Scholar 

  • Centonze D, Napolitano M, Saulle E, Gubellini P, Picconi B, Martorana A, Pisani A, Gulino A, Bernardi G, Calabresi P, 2002a, Tissue plasminogen activator is required for corticostriatal long-term potentiation. Eur J Neurosci. 16:713–721.

    Article  PubMed  Google Scholar 

  • Centonze D, Saulle E, Pisani A, Bonsi P, Tropepi D, Bernardi G, Calabresi P, 2002b, Tissue plasminogen activator is required for striatal post-ischemic synaptic potentiation. Neuroreport 13:115–118.

    CAS  PubMed  Google Scholar 

  • Chan CS, Weeber EJ, Kurup S, Sweatt JD, Davis RL, 2003, Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci. 23:7107–7116.

    CAS  PubMed  Google Scholar 

  • Chang FL, Greenhough WT, 1984, Transient and enduring morphological correlates of synaptic activity and efficacy in the rat hippocampal slice. Brain Res. 309:35–46.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Tonegawa S, 1997, Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu Rev Neurosci. 20:157–184.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Huang LY, 1992, Protein kinase C reduces Mg2+ block of NMDA receptor channels as a mechanism of modulation. Nature 356:521–523.

    Article  CAS  PubMed  Google Scholar 

  • Chetkovich DM, Gray R, Johnston D, Sweatt JD, 1991, N-methyl- D -aspartate receptor activation increased cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc Natl Acad Sci USA 88:6467–6471.

    CAS  PubMed  Google Scholar 

  • Cho K, Aggleton JP, Brown MW, Bashir ZI, 2001, An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol. 532:459–466.

    Article  CAS  PubMed  Google Scholar 

  • Colley PA, Sheu FS, Routtenberg A, 1990, Inhibition of protein kinase C blocks two components of LTP persistence, leaving initial potentiation intact. J Neurosci. 10:3353–3360.

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H, 1983, Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond.) 334:33–46.

    CAS  Google Scholar 

  • Coss RG, Perkel DH, 1985, The function of dendritic spines—a review of theoretical issues. Behav Neurol Biol. 44:151–185.

    Article  CAS  Google Scholar 

  • Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S, 1994, Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455–459.

    Article  CAS  PubMed  Google Scholar 

  • Crick F, 1982, Do dendritic spines twitch? Trends Neurosci. 5:44–46.

    Article  Google Scholar 

  • Davies B, Kearns IR, Ure J, Davies CH, Lathe R, 2001, Loss of hippocampal serine protease BSP1/neuropsin predisposes to global seizure activity. J Neurosci. 21:6993–7000.

    CAS  PubMed  Google Scholar 

  • Davis GE, Martin BM, 1990, A latent M r 94,000 gelatin-degrading metalloproteinase induced during differentiation of HL-60 promyelocytic leukemia cells: a member of the collagenases family of enzymes. Cancer Res. 50:1113–1120.

    CAS  PubMed  Google Scholar 

  • Denny JB, Polan-Curtain J, Ghuman A, Wayner MJ, Armstrong DL, 1990, Calpain inhibitors block long-term potentiation. Brain Res. 534:317–320.

    CAS  PubMed  Google Scholar 

  • Desmond NL, Levy WB, 1983, Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus. Brain Res. 265:21–30.

    Article  CAS  PubMed  Google Scholar 

  • Desmond NL, Levy WB, 1986, Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus. J Comp Neurol. 253:266–275.

    Google Scholar 

  • Desmond NL, Levy WB, 1988, Synaptic interface surface area increases with long-term potentiation in the hippocampal dentate gyrus. Brain Res. 453:308–314.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Dunwiddie TV, Rose GM, 1988, Characteristics of hippocampal primed burst potentiation in-vitro and in awake rats. J Neurosci. 8:4079–4088.

    CAS  PubMed  Google Scholar 

  • Dineley KT, Weeber EJ, Atkins C, Adams JP, Anderson AE, Sweatt JD, 2001, Leitmotifs in the biochemistry of LTP induction: amplification, integration and coordination. J Neurochem. 77:961–971.

    Article  CAS  PubMed  Google Scholar 

  • Dityatev A, Schachner M, 2003, Extracellular matrix molecules and synaptic plasticity. Nature Rev Neurosci. 4:456–468.

    CAS  Google Scholar 

  • Doherty P, Fazeli MS, Walsh FS, 1995, The neural cell adhesion molecule and synaptic plasticity. J Neurobiol. 26:437–446.

    Article  CAS  PubMed  Google Scholar 

  • Doyle E, Nolan PM, Bell R, Regan CM, 1992a, Hippocampal NCAM 180 transiently increases sialyation during the acquisition and consolidation of a passive avoidance response in the adult rat. J Neurosci Res. 31:513–523.

    Article  CAS  PubMed  Google Scholar 

  • Doyle E, Nolan PM, Bell R, Regan CM, 1992b, Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J Neurochem. 59:1570–1573.

    CAS  PubMed  Google Scholar 

  • Dudai Y, 1996, Consolidation: fragility on the road to the engram. Neuron 17:367–370.

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H, Otto T, 1992, The hippocampus—what does it do? Behav Neural Biol. 57:2–36.

    CAS  PubMed  Google Scholar 

  • Emilien G, Beyreuther K, Maters CL, Maloteaux JM, 2000, Prospects for pharmacological intervention in Alzheimer Disease. Neurol Rev. 57:454–459.

    CAS  Google Scholar 

  • Engert F, Bonhoeffer T, 1999, Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70.

    CAS  PubMed  Google Scholar 

  • Ennis BW, Matrisian LM, 1994, Matrix degrading metalloprotcinascs. J Neurooncol. 18: 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Fagni L, Chavis P, Ango F, Bockaert J, 2000, Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci. 23:80–88.

    Article  CAS  PubMed  Google Scholar 

  • Fazeli MS, Breen K, Errington ML, Bliss TV, 1994, Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci Lett. 169:77–80.

    Article  CAS  PubMed  Google Scholar 

  • Feig S, Lipton P, 1993, Pairing the cholinergic agonist carbachol with patterned Schaffer collateral stimulation initiates protein synthesis in hippocampal CA1 pyramidal cell dendrites via muscarinic, NMDA-dependent mechanism. J Neurosci. 13:1010–1021.

    CAS  PubMed  Google Scholar 

  • Fiala JC, Allwardt B, Haris KM, 2002, Dendritic spines do not split during hippocampal LTP or maturation. Nature Neurosci. 5:297–298.

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Itoh K, 1996, Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends Neurosci. 19:473–480.

    Article  CAS  PubMed  Google Scholar 

  • Fifkcova E, Anderson CL, 1981, Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol. 74:621–627.

    Google Scholar 

  • Fifkova’ E, Morales M, 1991, in Development and plasticity of the visual system (Cronley-Dillon, J.R., ed.) pp 133–147, Macmillan Press.

    Google Scholar 

  • Fifkova E, Van Harreveld A, 1977, Long-lasting morphological changes in dendritic spines of dentate ranular cells following stimulation of the entorhinal area. J Neurocytol. 6: 211–230.

    CAS  PubMed  Google Scholar 

  • Fischer G, Kunemund V, Schachner M, 1986, Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J Neurosci. 6:605–612.

    CAS  PubMed  Google Scholar 

  • Frey U, Huang YY, Kandel ER, 1993, Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664.

    CAS  PubMed  Google Scholar 

  • Frey U, Muller M, Kuhl D, 1996, A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J Neurosci. 16:2057–2063.

    CAS  PubMed  Google Scholar 

  • Frisch SM, Ruoslahti E, 1997, Integrins and anoikis. Curr Opin Cell Biol 9:701–706.

    Article  CAS  PubMed  Google Scholar 

  • Fransen E, D’Hooge R, Van Camp G, Verhoye M, Sijbers J, Reyniers E, Soriano P, Kamiguchi H, Willemsen R, Koekkoek SK, De Zeeuw CI, De Deyn PP, Van der Linden A, Lemmon V, Kooy RF, Willems PJ, 1998, L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum Mol Genet. 7:999–1009.

    Article  CAS  PubMed  Google Scholar 

  • Geinisman Y, 2000, Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex 10:952–962.

    Article  CAS  PubMed  Google Scholar 

  • Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA, 2001, Associative learning elicits the formation of multiple-synapse boutons. J Neurosci. 21:5568–5573.

    CAS  PubMed  Google Scholar 

  • Gilbert ME, Colicos MA, Kandel ER, Kuhl D, 1993, Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361:453–457.

    PubMed  Google Scholar 

  • Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF, 2000, Potentiation of NMDA receptor function by serine proteases thrombin. J Neurosci. 20:4582–4595.

    CAS  PubMed  Google Scholar 

  • Goette A, Rocken C, Nepple K, Lendeckel U, 2003, in Proteases in Biology and Disease, Volume 2 (Hooper, N. and Lendeckel, U., eds), pp201–227, Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Goldbrunner RH, Bernstein JJ, Tonn JC, 1998, ECM-mediated glioma cell invasion. Microsc Res Tech. 13:250–257.

    Google Scholar 

  • Grover LM, Teyler TJ, 1990, Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347:477–479.

    Article  CAS  PubMed  Google Scholar 

  • Grover LM, Teyler TJ, 1995, Different mechanisms may be required for maintenance of NMDA receptor-dependant and independent forms of long-term potentiation. Synapse 19:121–133.

    Article  CAS  PubMed  Google Scholar 

  • Grumet M, Flacus A, Margolis RU, 1993, Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol. 120:815–824.

    Article  CAS  PubMed  Google Scholar 

  • Gualandris A, Jones TE, Strickland S, Tsirka SE, 1996, Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci. 16:2220–2225.

    CAS  PubMed  Google Scholar 

  • Gustafsson B, Asztely F, Hanse E, Wigström H, 1989, Onset characteristics of long-term potentiation in the guinea-pig hippocampal CA1 region in vitro. Eur J Neurosci. 1:382–394.

    PubMed  Google Scholar 

  • Guttmann RP, Baker DL, Seifert KM, Cohen AS, Coulter DA, Lynch DR, 2001, Specific proteolysis of the NR2 subunit at multiple sites by calpain. J Neurochem. 78:1083–1093.

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Fiala JC, Ostroff L, 2003, Structural changes at dendritic spine synapses during long-term potentiation. Philos trans R Soc Lond B 358:745–748.

    Article  Google Scholar 

  • Harris KM, Stevens JK, 1989, Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. J Neurosci. 9:2982–2997.

    CAS  PubMed  Google Scholar 

  • Harvey J, Collingridge GL, 1992, Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett. 139:197–200.

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO, 1949, Organization of Behavior: A Neurophsychological Theory, Wiley.

    Google Scholar 

  • Hoffman KB, 1998a, The relationship between adhesion molecules and neuronal plasticity. Cell Mol Biol. 18:461–474.

    CAS  Google Scholar 

  • Hoffman KB, Larson J, Bahr BA, Lynch G, 1998b, Activation of NMDA receptors stimulates extracellular proteolysis of cell adhesion molecules in hippocampus. Brain Res. 811:152–155.

    CAS  PubMed  Google Scholar 

  • Hoffman KB, Martinez J, Lynch G, 1998c, Proteolysis of cell adhesion molecules by serine proteases: A role in long term potentiation? Brain Res. 811:29–33.

    CAS  PubMed  Google Scholar 

  • Hoffman KB, Pinkstaff JK, Gall M, Lynch G, 1998d, Seizure induced synthesis of fibronectin is rapid and age dependent: implications for long-term potentiation and sprouting. Brain Res. 812:209–215.

    Article  CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S, 1994, Cloned glutamate receptors. Annu Rev Neurosci. 17:31–108.

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Rusakov DA, Bliss TV, Fine A, 1995, Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: Evidence for changes in length and orientation associated with chemically induced LTP. J Neurosci. 15:5560–5573.

    CAS  PubMed  Google Scholar 

  • Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP, Hawkins RD, Schoonjans L, Kandel ER, Godfraind JM, Mulligan R, Collen D, Carmeliet P, 1996a, Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci USA 93:8699–8704.

    CAS  PubMed  Google Scholar 

  • Huang YY, Kandel ER, 1994, Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Memory 1:74–82.

    CAS  Google Scholar 

  • Huang YY, Nguyen PV, Abel T, Kandel ER, 1996b, Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn Memory 3:74–85.

    CAS  Google Scholar 

  • Huber KM, Mauk MD, Thompson C, Kelly PT, 1995, A critical period of protein kinase activity after tetanic stimulation is required for the induction of long-term potentiation. Learn Memory 2:81–100.

    CAS  Google Scholar 

  • Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR, 1996, Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16:973–982.

    Article  CAS  PubMed  Google Scholar 

  • Inomata M, Hayashi M, Ohno-Iwashita Y, Tsubuki S, Saido TC, Kawashima S, 1996, Involvement of calpain in integrin-mediated signal transduction. Arch Biochem Biophys. 328:129–134.

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Ozaki M, Stevens B, Fields RD, 1997, Activity-dependent regulation of N-cadherin in DRG neurons: differential regulation of N-cadherin, NCAM, and L1 by distinct patterns of action potentials. J Neurobiol. 33:735–748.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe DB, Fisher SA, Brown TH, 1994, Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. J Neurobiol. 25:220–233.

    Article  CAS  PubMed  Google Scholar 

  • Jeng A, Gonnell N, Skiles, J, 2001, The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem. 8:425–474.

    PubMed  Google Scholar 

  • Johnston, AN, Burne TH, Rose SP, 1998, Observation learning in day-old chicks using a one-trial passive avoidance learning paradigm. Animal Behav. 56:1347–1353.

    Google Scholar 

  • Johnston AN, Rose SP, 2001, Memory consolidation in day-old chicks requires BDNF but not NGF or NT-3; an antisense study. Brain Res Mol Brain Res. 88:26–36.

    CAS  PubMed  Google Scholar 

  • Juliano RI, Haskill S, 1993, Minireview: Signal transduction from the extracellular matrix. J Cell Biol. 120:577–585.

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek L, Lapinska-Dzwonek J, Szymczak S, 2002, Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections? EMBO J. 21:6643–6648.

    Article  CAS  PubMed  Google Scholar 

  • Kadmon G, Kowitz A, Altevogt P, Schachner M, 1990, The neural cell adhesion molecule N-CAM enhances L1-dependent cell-cell interactions. J Cell Biol. 110:193–208.

    CAS  PubMed  Google Scholar 

  • Kahari VM, Saarialho-Kere U, 1997, Matrix metalloproteinases in skin. Exp Dermatol. 6: 199–213.

    CAS  PubMed  Google Scholar 

  • Kahari VM, Saarialho-Kere U, 1999, Matrix metalloproteinases and their inhibition in tumour growth and invasion. Ann Med. 31:34–45.

    CAS  PubMed  Google Scholar 

  • Kalderon K, 1979, Migration of Schwann cells and wrapping of neurites in vitro: a function of protease activity (plasmin) in the growth medium. Proc Natl Acad Sci USA 76:5992–5996.

    CAS  PubMed  Google Scholar 

  • Kamiguchi H, Hlavin ML, Lemmon V, 1998, Role of L1 in neural development: what the knockouts tell us. Mol Cell Neurosci. 12:48–55.

    Article  CAS  PubMed  Google Scholar 

  • Kanterewicz BI, Urban NN, McMahon DB, Norman ED, Giffen LJ, Favata MF, Scherle PA, Trzskos JM, Barrionuevo G, Klann E, 2000, The extracellular signal-regulation kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci. 20:3057–3066.

    CAS  PubMed  Google Scholar 

  • Kenwrick S, Doherty P, 1998, Neural cell adhesion molecule L1: relating disease to function. Bioessays 20:668–675.

    Article  CAS  PubMed  Google Scholar 

  • Kirov SA, Harris KM, 1999a, Dendrites are more spiny on mature hippocampal neurons when synapses are inactivate. Nat Neurosci. 2:878–883.

    CAS  PubMed  Google Scholar 

  • Kirov SA, Sorra KE, Harris KM, 1999b, Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci. 19:2876–2886.

    CAS  PubMed  Google Scholar 

  • Kohmura N, Senzaki K, Hamada S, Kai N, Yasuda R, Watanabe M, Yasuda M, Mishina M, Yagi T, 1998, Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20:1137–1151.

    Article  CAS  PubMed  Google Scholar 

  • Komai S, Matsuyama T, Matsumoto K, Kato K, Kobayashi M, Imamura K, Yoshida S, Ugawa S, Shiosake S, 2000, Neuropsin regulates an early phase of Schaffer-collateral long-term potentiation in the murine hippocampus. Eur J Neurosci. 12:1479–1486.

    Article  CAS  PubMed  Google Scholar 

  • Konorski J, 1948, Conditioned Reflexes and Neuron Organization, Cambridge University Press.

    Google Scholar 

  • Krystosek A, Seeds NW, 1981, Plasminogen activator secretion by granule neurons in cultures of developing cerebellum. Proc Natl Acad Sci USA 78:7810–7814.

    CAS  PubMed  Google Scholar 

  • Lamprecht R, LeDoux J, 2004, Structural plasticity and memory. Nature Rev Neurosci. 5: 45–54.

    CAS  Google Scholar 

  • Larson J, Lynch G, 1986, Induction of synaptic potentiation in hippocampus by pattern stimulation involves two events. Science 232:985–988.

    CAS  PubMed  Google Scholar 

  • Lashley KD, 1950, in Society for Experimental Biology. Physiological Mechanisms in Animal Behavior, pp 454–480, Cambridge University Press.

    Google Scholar 

  • Lauri SE, Kaukinen S, Kinnunen T, Ylinen A, Kaila K, Taira T, Rauvala H, 1999, Regulatory role and molecular interactions of a cell-surface-heparan sulfate proteoglycan (N-syndecan) in hippocampal long-term potentiation. J Neurosci. 19:1226–1235.

    CAS  PubMed  Google Scholar 

  • iee KS, Schottler F, Oliver M, Lynch G, 1980, Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. J Neurophysiol. 44:247–258.

    Google Scholar 

  • Linnemann D, Bock E, 1989, Cell adhesion molecules in neural development. Dev Neurosci. 11:149–173.

    CAS  PubMed  Google Scholar 

  • Lovinger DM, Colley PA, Akers RF, Nelson RB, Routtenberg A, 1986, Direct relation of long-duration synaptic potentiation to phosphorylation of membrane protein F1; a substrate for membrane protein kinase C. Brain Res. 339:205–211.

    Google Scholar 

  • Lu YM, Roder JC, Davidow J, Salter MW, 1998, Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279:1363–1367.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Wyszynski M, Sheng M, Baudry M, 2001, Proteolytsis of glutamate receptor-interacting protein by calpain in rat brain: Implication for synaptic plasticity. J Neurochem. 77:1553–1560.

    Article  CAS  PubMed  Google Scholar 

  • Lukes A, Mun-Bryce S, Lukes M, Rosenberg GA, 1999, Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol. 19:267–284.

    CAS  PubMed  Google Scholar 

  • Lüthl A, Laurent JP, Figurov A, Muller D, Schachner M, 1994, Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777–779.

    PubMed  Google Scholar 

  • Lynch G, 1998, Memory and the brain: Unexpected chemistries and a new Pharmacology. Neurobiol Learn Memory 70:82–100.

    CAS  Google Scholar 

  • Lynch G, Baudry M, 1984, The biochemistry of memory: A new and specific hypothesis. Science 224:1057–1063.

    CAS  PubMed  Google Scholar 

  • Lynch G, Baudry M, 1987, Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res Bull. 18:809–815.

    Article  CAS  PubMed  Google Scholar 

  • Lynch G, Larson J, Staubli U, Granger R, 1991, in Memory: Organization and locus of change. (Squire, L.R., Weinberger, N.M., Lynch, G., McGaugh, J.L., eds), p. 330–363, Oxford University Press.

    Google Scholar 

  • Lynch MA, 2004, Long-term potentiation and memory. Physiol Rev. 84:87–136.

    CAS  PubMed  Google Scholar 

  • Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, Vassali JD, 1999, Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18:3007–3012.

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Johnston DA, 1995, Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304.

    CAS  PubMed  Google Scholar 

  • Magee JC, Johnston DA, 1997, A synaptically ocontrolled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213.

    Article  CAS  PubMed  Google Scholar 

  • Majewska A, Brown, E, Ross J, Yuste R, 2000, Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci. 20:1722–1734.

    CAS  PubMed  Google Scholar 

  • Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA, Waxham MN, 1989, An essential role for postsynaptic calmodulin and proteinkinase activity in long-term potentiation. Nature 340:554–557.

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA, 1999, Long-term potentiation — A decade of progress? Science 285: 1870–1874.

    Article  CAS  PubMed  Google Scholar 

  • Malinow R, Schulman H, Tsien RW, 1989, Inhibition of post-synaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245: 862–866.

    CAS  PubMed  Google Scholar 

  • Mayford M, Barzilai A, Keller F, Schachner S, Kandel ER, 1992, Modulation of an NCAM related adhesion molecule with long term synaptic plasticity in Aplysia. Science 256: 638–644.

    CAS  PubMed  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG, 2000, Synaptic plasticity and memory: An evaluation of the hypothesis. Annu Rev Neurosci. 23: 649–711.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, 2001, Dendritic spine geometry is critical for AMPA receptor expressin in hippocampal CA1 pyramidal neurons. Nature Neurosci. 411: 1086–1092.

    Google Scholar 

  • Matus A, 2000, Actin-based plasticity in dendritic spines. Science 290: 754–778.

    Article  CAS  PubMed  Google Scholar 

  • Mayford M, Abel T, Kandel ER, 1995, Transgenic approaches to cognition. Curr Opinion Neurobiol. 5: 141–148.

    CAS  Google Scholar 

  • Mileusnic R, Rose SP, Lancashire C, Bullock S, 1995, Characterization of antibodies specific for chick brain NCAM which cause amnesia for a passive avoidance task. J Neurochem. 64: 2598–2605.

    CAS  PubMed  Google Scholar 

  • Milev P, Maurel P, Haring M, Margolis RK, Margolis RU, 1996, TAG-1/axonin-1 is a highaffinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-zeta/beta, and NCAM. J Biol Chem. 271:15716–15723.

    CAS  PubMed  Google Scholar 

  • Miyakawa H, 1992, Synaptically activated increases in Ca 2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca 2+ channels. Neuron 9: 1163–1173.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery AM, Becker JC, Chi-Hung Siu, Lemmon VP, Zhao X, Reisfeld RA, 1996, Human neural cell adhesion NILE are ligands for integrin αvβ3. J Cell Biol. 132:475–485.

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Fifkova’ E, 1989, In situ localization of myosin and actin in dendritic spines with the immunogold technique. J Comp Neurol. 279: 666–674.

    Article  CAS  PubMed  Google Scholar 

  • Moran N, Bock E, 1988, Characterization of the kinetics of neural cell adhesion molecule homophilic binding. FEBS Letters 242: 121–124.

    Article  CAS  PubMed  Google Scholar 

  • Morgan SL, Teyler TJ, 1999, VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J Neurophysiol. 82: 736–740.

    CAS  PubMed  Google Scholar 

  • Morris RG, Anderson E, Lynch GS, Baudry M, 1986, Selective impairment of learning in blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319: 774–776.

    CAS  PubMed  Google Scholar 

  • Morris RG, Davis S, Butcher SP, 1990, Hippocampal synaptic plasticity and NMDA receptors: A role in information storage? Phil Trans Royal Soc Lond B 329:189–204.

    Google Scholar 

  • Morris RG, Davis S, Butcher SP, 1991, in Behavioral and neural aspects of learning and memory, (Krebs, J.R., Horn, G., eds), pp 89–106, Clarendon Press.

    Google Scholar 

  • Muller D, Nikonenko I, Jourdain P, Alberi S, 2002, LTP, memory and structural plasticity. Curr Mol Med 2:605–611.

    Article  CAS  PubMed  Google Scholar 

  • Müller GE, Pilzecker A, 1900, Experimentelle beitrage zur lehre vom gedachtnis. Z Psychol Suppl. 1.

    Google Scholar 

  • Murphy G, Knauper V, Cowell S, Hembry R, Stanton H, Butler G, Freije J, Pendas AM, Lopez-Otin C, 1999, Evaluation of some newer matrix metalloproteinases. Ann NY Acad Sci. 878: 25–39.

    CAS  PubMed  Google Scholar 

  • Murphy KJ, Regan CM, 1999, Sequential training in separate paradigms impairs second task consolidation and learning-associated modulations of hippocampal NCAM polysialylation. Neurobiol Learn Memory 72: 28–38.

    CAS  Google Scholar 

  • Nagai N, Urano T, Endo A, Takahashi H, Takada Y, Takada A, 1999, Neuronal degeneration and a decrease in laminin-like immunoreactivity is associated with elevated tissue-type plasminogen activator in the rat hippocampus after kainic acid injection. Neurosci Res. 33: 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Ostroff LE, Fiala JC, Allwardt B, Harris KM, 2002, Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Perkel DJ, Petrozzino JJ, Nicoll RA, Connor JA, 1993, The role of Ca 2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation. Neuron 11: 817–823.

    Article  CAS  PubMed  Google Scholar 

  • Pittman RN, Ivins JK, Buettner HM, 1989, Neuronal plasminogen activators: cell surface binding sites and involvement in neurite outgrowth. J Neurosci. 9: 4269–4286.

    CAS  PubMed  Google Scholar 

  • Poser S, Storm DR, 2001, Role of Ca 2+ stimulated adenylyl cyclases in LTP and memory formation. Int J Devl Neurosci. 19: 387–394.

    CAS  Google Scholar 

  • Probstmeier R, Kuhn K, Schachner M, 1989, Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J Neurochem. 53: 1794–1801.

    CAS  PubMed  Google Scholar 

  • Qian Z, Gilbert ME, Colocos MA, Kandel ER, Kuhl D, 1993, Tissue-plasminogen activator is induced as an immediately-early gene during seizure, kindling and long-term potentiation. Nature 361: 453–457.

    CAS  PubMed  Google Scholar 

  • Qualls R, Schoborg R, Laffan J, Baisden R, Woodruff M, 1999, The effect of the presence or absence of NCAM-180 on learning and memory in the mouse. Int Behav Neurosci Soc. 8: 41.

    Google Scholar 

  • Racine RJ, Milgram MW, Hafner S, 1983, Long-term potentiation phenomena in the rat limbic forebrain. Brain Res. 260: 217–231.

    CAS  PubMed  Google Scholar 

  • Ramakers GM, Pasinelli P, van Beest M, van der Slot A, Gispen WH, De Graan PN, 2000, Activation of pre-and postsynaptic protein knase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus. Neurosci Lett. 286: 53–56.

    Article  CAS  PubMed  Google Scholar 

  • Rao A, Steward O, 1991, Evidence that protein constituents of post-synaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J Neurosci. 11: 2881–2895.

    CAS  PubMed  Google Scholar 

  • Reichardt LF, Tomaselli KJ, 1991, Extracellular matrix molecules and their receptors: functions in neural development. Ann Rev Neurosci. 14: 531–570.

    CAS  PubMed  Google Scholar 

  • Rivera S, Khrestchatisky M, 2000, in Advances in synaptic plasticity (Baudry M, Davis JL, Thompson RF, eds), pp 53–86, The MIT Press.

    Google Scholar 

  • Robinson GS, Crooks GB, Shinkman PG, Gallagher M, 1989, Behavioral effects of MK-801 mimic deficits associated with hippocampal damage. Psychobiology 17: 156–164.

    CAS  Google Scholar 

  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC, 1998, Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29: 1020–1030.

    CAS  PubMed  Google Scholar 

  • Ronn LC, Bock E, Linnemann D, Jahnsen H, 1995, NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res. 677: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Ronn LC, Bock E, Linnemann D, Jahnsen H, 1995, NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res. 677: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Ronn LC, Hartz BP, Bock E, 1998, The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol. 33: 853–864.

    CAS  PubMed  Google Scholar 

  • Rose SP, 1996, Cell adhesion molecules and the transition from short-to long-term memory. J Physiol (Paris) 90: 387–391.

    CAS  Google Scholar 

  • Rose SP, Stewart MG, 1999, Cellular correlates of stages of memory formation in the chick following passive avoidance training. Behav Brain Res. 98: 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Ruegg MA, 2001, Molecules involved in the formation of synaptic connections in muscle and brain. Matrix Biol. 20: 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Ruppert M, Aigner S, Hubbe M, Yagita H, Altevogt P, 1995, The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol. 131: 1881–1891.

    Article  CAS  PubMed  Google Scholar 

  • Rutka II, Apodaca G, Stern R, Rosenblum M, 1988, The extracellular matrix of the central and peripheral nervous system: Structure and function. J Neurosurg. 69: 133–170.

    Google Scholar 

  • Sabatini BL, Maravall M, Svoboda K, 2001, Ca 2+ signaling in dendritic spines. Curr Opin Neurobiol. 11:349–356.

    Article  CAS  PubMed  Google Scholar 

  • Salles FJ, Schechter N, Strickland S, 1990, A plasminogen activator is induced during goldfish optic nerve regeneration. Embo J. 9: 2471–2477.

    CAS  PubMed  Google Scholar 

  • Schachner M, 1997, Neural recognition molecules and synaptic plasticity. Curr Opin Cell Biol 9: 627–634.

    Article  CAS  PubMed  Google Scholar 

  • Schikorski T, Stevens CF, 1997, Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci. 17: 5858–5867.

    CAS  PubMed  Google Scholar 

  • Schoenwaelder SM, Yuan Y, Cooray P, Salem HH, Jackson SP, 1997, Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin alphaIIbeta3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. J Biol Chem. 272: 1694–1702.

    Article  CAS  PubMed  Google Scholar 

  • Scholey AB, Rose SP, Zamini MR, Bock E, Schachner M, 1993, A role for the neuronal cell adhesion molecule in a late-consolidating phase of glycoprotein synthesis six hours following passive avoidance training of the young chick. Neuroscience 55: 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Scholey AB, Mileusnic R, Schachner M, Rose SP, 1995, A role for a chicken homolog of the neural cell adhesion molecule L1 in consolidation of memory for a passive avoidance task in the chick. Learn Memory 2: 17–25.

    CAS  Google Scholar 

  • Seeds NW, Siconolfi LB, Haffke SP, 1997, Neuronal extracellular proteases facilitate cell migration, axonal growth, and pathfinding. Cell Tissue Res. 290: 367–370.

    Article  CAS  PubMed  Google Scholar 

  • Seeds NW, Williams BL, Bickford PC, 1995, Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science 270: 1992–1994.

    CAS  PubMed  Google Scholar 

  • Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grubel G, Legrand JF, Als-Nielsen J, Colman DR, Hendrickson WA, 1995, Structural basis of cell-cell adhesion by cadherins. Nature 374: 327–337.

    Article  CAS  PubMed  Google Scholar 

  • Sherrington CS, 1906, The Integrative Action of the Nervous System., Yale University Press.

    Google Scholar 

  • Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R, 1999, Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284: 1811–1816.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu C, Yoshioka S, Shibata M, Kato K, Momota Y, Matsumoto K, Shiosaka T, Midorikowa R, Kamachi T, Dawabe A, Shiosaka S, 1998, Characterization of recomginant and brain neuropsin-a plasticity-relates serine protease. J Biol Chem. 273: 11189–11196.

    CAS  PubMed  Google Scholar 

  • Shors TJ, Matzel LD, 1997, Long-term potentiation: What’s learning got to do with it? Behav Brain Sci. 20: 597–655.

    CAS  PubMed  Google Scholar 

  • Silva AJ, Stevens CF, Tonegawa S, Wang Y, 1992, Deficient hippocampal long-term potentiation in ∀ calcium-calmodulin kinase II mutant mice. Science 257: 201–206.

    CAS  PubMed  Google Scholar 

  • Siman R, Baudry M, Lynch G, 1984, Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci USA 81: 3572–3576.

    CAS  PubMed  Google Scholar 

  • Smith MA, Ellis-Davies GC, Magee JC, 2003, Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol (Lond.) 548: 245–258.

    Article  CAS  Google Scholar 

  • Solomonia RO, McCabe BJ, Horn G, 1998, Neural cell adhesion molecules, learning, and memory in the domestic chick. Behav Neurosci. 112: 646–655.

    Article  CAS  PubMed  Google Scholar 

  • Sorra KE, Harris KM, 2000, Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10: 501–511.

    Article  CAS  PubMed  Google Scholar 

  • Netzel-Arnett S, Sang QX, Moore WG, Navre M, Birkedal-Hansen H, Van Wart HE, 1993, Comparative sequence specificities of human 72-and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 32: 6427–6432.

    Article  CAS  PubMed  Google Scholar 

  • Newton RA, Thiel M, Hogg N, 1997, Signalling mechanisms and the activation of leukocyte integrins. J Leukoc Biol. 61: 422–426.

    CAS  PubMed  Google Scholar 

  • Nicole O, Docagne F, Ali C, Margailli I, Carmeliet P, MacKenzie ET, Vivein D, Buisson A, 2001, The proteolytic activity of tissue-plasminogen activator enhances NMDA receptormediated signaling. Nature Med. 7: 59–64.

    CAS  PubMed  Google Scholar 

  • Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D, 2002, Activity-induced changes of spine morphology. Hippocampus 12: 585–591.

    Article  PubMed  Google Scholar 

  • Nose A, Nagafuchi A, Takeichi M, 1988, Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54: 993–1001.

    Article  CAS  PubMed  Google Scholar 

  • Obenaus A, Mody I, Baimbridge KG, 1989, Dantrolene-Na (Dantrium) blocks induction of long-term potentiation in hippocampal slices. Neurosci Lett. 98: 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE, 1990, Multiple modes of activation of latent human fibroblast collagenases: evidence for the role of a Cys73 activesite zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA 87: 364–368.

    CAS  PubMed  Google Scholar 

  • Squire LR, Barondes SH, 1972, Variable decay of memory and its recovery in cycloheximide-treated mice. Proc Natl Acad Sci USA 69: 1416–1420.

    CAS  PubMed  Google Scholar 

  • Stamenkovic I, 2003, Extracellular matrix remodeling: the role of matrix metalloproteinases. J Path. 200: 448–464.

    CAS  PubMed  Google Scholar 

  • Staubli U, Chun D, Lynch G, 1998, Time-dependent reversal of long-term potentiation by an integrin antagonist. J Neurosci. 18: 3460–3469.

    CAS  PubMed  Google Scholar 

  • Staubli U, Larson S, Thibault O, Baudry M, Lynch G, 1988, Chronic administration of a thiol-proteinase inhibitor blocks long-term potentiation of synaptic responses. Brain Res. 444: 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Steward O, 1997, mRNA localization in neurons: a multipurpose mechanism? Neuron 18: 9–12.

    Article  CAS  PubMed  Google Scholar 

  • Steward O, Banker GA, 1992, Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends Neurosci. 15: 180–186.

    Article  CAS  PubMed  Google Scholar 

  • Storms SD, Kim AC, Tran BT, Cole GJ, Murray BA, 1996, NCAM-mediated adhesion of transfected cells to agrin. Cell Adhesion Commun. 3: 497–509.

    CAS  Google Scholar 

  • Sweatt JD, 1999, Toward a molecular explanation for long-term potentiation. Learn Memory 6: 399–416.

    CAS  Google Scholar 

  • Taishi P, Sanchez C, Wang Y, Fang J, Harding JW, Krueger JM, 2001, Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Physiol Reg Integ Comp Physiol. 281: R839–845.

    CAS  Google Scholar 

  • Takeichi M, 1990, Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem. 59: 237–252.

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Hung CP, Schuman EM, 1998, A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20: 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  • Tanzi E, 1893, I fatti c Ic induzioni nell’odicrnaistilogia del sistema nervosa. Riv Sper Freniat Med Alienazioni Meni. 19: 419–472.

    Google Scholar 

  • Teyler TJ, 1999, Use of brain slices to study long-term potentiation and depression as examples of synaptic plasticity. Methods: Companion Methods Enzymol. 18: 109–116.

    CAS  Google Scholar 

  • Teyler TJ, DiScenna P, 1987, Long-term potentiation. Annu Rev Neurosci. 10: 131–161.

    Article  CAS  PubMed  Google Scholar 

  • Teyler TJ, Morgan SL, Russell RN, Woodside BL, 2001, Synaptic plasticity and secondary epileptogenesis. Int Rev Neurobiol. 45: 253–267.

    CAS  PubMed  Google Scholar 

  • Tiunova A, Anokhin KV, Schachner M, Rose SP, 1998, Three time windows for amnestic effect of antibodies to cell adhesion molecule L1 in chicks. Neuroreport 9: 1645–1648.

    CAS  PubMed  Google Scholar 

  • Tomasiewicz H, Ono K, Yee D, Thompson C, Goridis C, Rutishauser U, Magnuson T, 1993, Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11: 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  • Tomimatsu Y, Idemoto S, Moriguchi S, Watanabe S, Nakanishi H, 2002, Proteases involved in long-term potentiation. Life Sci. 72: 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Toni N, Bucks PA, Nikonenko I, Bron CR, Muller D, 1999, LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402: 421–425.

    CAS  PubMed  Google Scholar 

  • Torre ER, Steward O, 1992, Demonstration of local protein synthesis within dendrites using a new cell culture system that permits isolation of living axons and dendrites. J Neurosci. 12: 762–772.

    CAS  PubMed  Google Scholar 

  • Tsien JZ, 2000, Linking Hebb’s coincidence-detection to memory formation. Curr Opin Neurobiol. 10: 266–273.

    Article  CAS  PubMed  Google Scholar 

  • Turgeon VL, Houenou LJ, 1997, The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res Rev. 25: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Tsirka SE, Bugge TH, Degen JL, Strickland S, 1997, Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin. Proc Natl Acad Sci USA 94: 9779–9781.

    Article  CAS  PubMed  Google Scholar 

  • Tsirka SE, Gualandris A, Amaral DG, Strickland S, 1995, Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377: 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Tsirka SE, Rogove AD, Stricklan S, 1996, Neuronal cell death and tPA Nature 384: 123–124.

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkov E, Shin RM, Bolshakov VY, 2004, Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning. Neuron 8: 139–151.

    Google Scholar 

  • Turgeon VL, Houenou LJ, 1997, The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res Rev. 25: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Turner RW, Baimbridge KG, Miller JJ, 1982, Calcium-induced long-term potentiation in the hippocampus. Neuroscience 7: 1497–1500.

    Article  Google Scholar 

  • Vanderklish P, Saido TC, Gall C, Arai, A Lynch G, 1995, Proteolysis of spectrin by calpain accompanes theta-burst stimulation in cultured hippocampal slices. Mol Brain Res. 32: 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Vanderklish P, Bednarski E, Lynch G, 1996, Translational suppression of calpain blocks long-term potentiation. Learn Memory 3: 209–217.

    CAS  Google Scholar 

  • Van Harreveld A Fifkova E, 1975, Swelling of dendritic spines I the fascia dentate after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol. 49: 736–749.

    PubMed  Google Scholar 

  • Van Wart HE, Birkedal-Hansen H, 1990, The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87: 5578–5582.

    PubMed  Google Scholar 

  • Vaughn DE, Bjorkman PJ, 1996, The (Greek) key to structures of neural adhesion molecules. Neuron 16: 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn PJ, Pike CJ, Cotman CW, Cunningham DD, 1995, Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci. 15: 5389–5401.

    Google Scholar 

  • Venstrom KA Reichardt LF, 1993, Extracellular matrix 2: role of extracellular matrix molecules and their receptors in the nervous system. FASEB J. 7: 996–1003.

    CAS  PubMed  Google Scholar 

  • Volfovsky N, Parnas H, Segal M, Korkotian E, 1999, Geometry of dendritic spines affets calcium dynamics in hippocampal neurons: Theory and experiments. J Neurophysiol. 82: 450–462.

    CAS  PubMed  Google Scholar 

  • Weiler IJ, Hawrylak N, Greenough WT, 1995, Morphogenesis in memory formatlion: Synaptic and cellular mechanisms. Behav Brain Res. 66: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SM, Collier, IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI, 1989, SV40-transformed human lung fibroblasts secrete a 92 kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 264:17213–17221.

    CAS  PubMed  Google Scholar 

  • Williams EJ, Furness J, Walsh FS, Doherty P, 1994, Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, NCAM, and N-cadherin. Neuron 13: 583–594.

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW, 2004, The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol. 72: 263–293.

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Kramar EA, Meighan SE, Harding JW, 2002a, Extracellular matrix molecules, long term potentiation, memory consolidation and the brain angiotensin system. Peptides 23: 221–246.

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Reichert JR, Davis C J, Harding JW, 2002b, Neural plasticity and the brain renin-angiotensin system. Neurosci Biobehav Rev. 26: 529–552.

    Article  CAS  PubMed  Google Scholar 

  • Xiao P, Bahr BA, Staubli U, Vanderklish PW, Lynch G, 1991, Evidence that matrix recognition contributes to stabilization but not induction of LTP. Neuroreport 2: 461–464.

    CAS  PubMed  Google Scholar 

  • Xu-Friedman MA, Regehr WG, 2003, Structural contributions to short-term synaptic plasticity. Physiol Rev 84: 69–85.

    Google Scholar 

  • Yan B, Calderwood DA, Yaspan B, Ginsberg MJ, 2001, Calpain cleavage promotes talin binding to β3 the integrin cytoplasmic domain. J Biol Chem. 276: 28164–28170

    CAS  PubMed  Google Scholar 

  • Yepes M, Sandkvist M, Coleman TA, Moore E, Wu JY, Mitola D, Bugge TH, Lawrence DA, 2002, Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J Clin Invest. 109: 1571–1578.

    Article  CAS  PubMed  Google Scholar 

  • Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR, 1998, Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 21: 75–80.

    CAS  PubMed  Google Scholar 

  • Yoshida S, Shiosaka S, 1999, Plasticity-related serine proteases in the brain (review). Internat J Mol Med. 3: 405–409.

    CAS  Google Scholar 

  • Yu TP, McKinney S, Lester HA, Davidson N, 2001, Gamma-aminobutyric acid type A receptors modulate cAMP-mediated long-term potentiation and long-term depression at monosynaptic CA3-CA1 synapses. Proc Natl Acad Sci. 98: 5264–5269.

    CAS  PubMed  Google Scholar 

  • Zamanillo D, Sprengel R, Hvalby Ø, Jensen V, Burnashev N, Rozov A, Kaiser KM, Köster HJ, Borchardt T, Worley P, Lübke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B, 1999, Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science. 284: 1805–1811.

    Article  CAS  PubMed  Google Scholar 

  • Zhang DX, Levy WB. Ketamine blocks the induction of LTP at the lateral entorhinal cortexdentate gyrus synapses. Brain Res. 593: 124–127.

    Google Scholar 

  • Zinebi F, Xie J, Liu J, Russell RT, Gallagher JP, McKernan MG, Shinnick-Gallagher P, 2003, NMDA currents and receptor protein are downregulated in the amygdala during maintenance of fear memory. J Neurosci. 23: 10283–10291.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc. Dordrecht

About this chapter

Cite this chapter

Wright, J.W., Harding, J.W. (2005). Proteases and Neuronal Plasticity. In: Lendeckel, U., Hooper, N.M. (eds) Proteases In The Brain. Proteases In Biology and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-23101-3_10

Download citation

Publish with us

Policies and ethics