Skip to main content

Abstract

We present our view of the state of the art in multiobjective programming. After an introduction we formulate the multiobjective program (MOP) and define the most important solution concepts. We then summarize the properties of efficient and nondominated sets. In Section 4 optimality conditions are reviewed. The main part of the chapter consists of Sections 5 and 6 that deal with solution techniques for MOPs and approximation of efficient and nondominated sets. In Section 7 we discuss specially-structured problems including linear and discrete MOPs as well as selected nonlinear MOPs. In Section 8 we present our perspective on future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Ben Abdelaziz, J. Chaouachi, and S. Krichen. A hybrid heuristic for multiobjective knapsack problems. In S. Voss, S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 205–212. Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  2. S.S. Abhyankar, T.L. Morin, and T. Trafalis. Efficient faces of polytopes: Interior point algorithms, parametrization of algebraic varieties, and multiple objective optimization. Contemporary Mathematics, 114:319–341, 1990.

    MathSciNet  Google Scholar 

  3. K.K. Achary. A direct simplex type method for determining all efficient solution pairs of time-cost transportation problem. Econ. Comput. Econ. Cybern. Stud. Res., 24(2/3):139–150, 1989.

    MATH  MathSciNet  Google Scholar 

  4. B. Aghezzaf. Efficiency and duality in multiobjective fractional programming. Opsearch, 32(1):31–43, 1995.

    MathSciNet  Google Scholar 

  5. B. Aghezzaf. Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems. Control and Cybernetics, 28(2):213–224, 1999.

    MATH  MathSciNet  Google Scholar 

  6. B. Aghezzaf and M. Hachimi. Second order optimality conditions in multiobjective optimization problems. Journal of Optimization Theory and Applications, 102(1):37–50, 1999.

    Article  MathSciNet  Google Scholar 

  7. K.A. Andersen, K. Jørnsten, and M. Lind. On bicriterion minimal spanning trees: An approximation. Computers and Operations Research, 23:1171–1182, 1996.

    Article  MathSciNet  Google Scholar 

  8. A. Arbel. An interior multiobjective primal-dual linear programming algorithm based on approximated gradients and efficient anchoring points. Computers and Operations Research, 24(4):353–365, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Armand. Finding all maximal efficient faces in multiobjective linear programming. Mathematical Programming, 61:357–375, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Armand and C. Malivert. Determination of the efficient set in multiobjective linear programming. Journal of Optimization Theory and Applications, 70(3):467–489, 1991.

    Article  MathSciNet  Google Scholar 

  11. A. Bárdossy, I. Bogárdi, and L. Duckstein. Composite programming as an extension of compromise programming. In P. Serafini, editor, Mathematics of Multi Objective Optimization, pages 375–408. Springer Verlag, Wien, 1985.

    Google Scholar 

  12. A. Baykasoglu, S. Owen, and N. Gindy. A taboo search based approach to find the Pareto optimal set in multiple objective optimisation. Journal of Engineering Optimization, 31:731–748, 1999.

    Google Scholar 

  13. A. Beato-Moreno, P. Luque-Calvo, R. Osuna-Gómez, and A. Rufián-Lizana. Finding efficient points in multiobjective quadratic programming with strictly convex objective functions. In R. Caballero, F. Ruiz, and R.E. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 365–373. Springer Verlag, Berlin, 1997.

    Google Scholar 

  14. A. Beato-Moreno, P. Ruiz-Canales, P.-L. Luque-Calvo, and R. Blanquero-Bravo. Multiobjective quadratic problem: Characterization of the efficient points. In J.P. Crouzeix, J.E. Martinez-Legaz, and M. Volle, editors, Generalized Convexity, Generalized Monotonicity: Recent Results, pages 425–438. Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  15. R. Beausoleil. Multiple criteria scatter search. In MIC’2001 — 4th Metaheuristics International Conference, pages 539–543, 2001. Porto, Portugal — July 16–20, 2001.

    Google Scholar 

  16. F.A. Behringer. Lexicographic quasiconcave multiobjective programming. Zeitschrift für Operations Research, 21:103–116, 1977.

    MATH  MathSciNet  Google Scholar 

  17. H.P. Benson. Existence of efficient solutions for vector maximization problems. Journal of Optimization Theory and Applications, 26(4):569–580, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.P. Benson. An improved definition of proper efficiency for vector maximization with respect to cones. Journal of Optimization Theory and Applications, 71:232–241, 1979.

    MATH  MathSciNet  Google Scholar 

  19. H.P. Benson. Finding an initial efficient extreme point for a linear multiple objective program. Journal of the Operational Research Society, 32:495–498, 1981.

    MATH  MathSciNet  Google Scholar 

  20. H.P. Benson. Finding certain weakly-efficient vertices in multiple objective linear fractional programming. Management Science, 31(2):240–245, 1985.

    MATH  MathSciNet  Google Scholar 

  21. H.P. Benson. Further analysis of an outcome set-based algorithm for multiple-objective linear programming. Journal of Optimization Theory and Applications, 97(1):1–10, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  22. H.P. Benson. Hybrid approach for solving multiple-objective linear programs in outcome space. Journal of Optimization Theory and Applications, 98(1):17–35, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  23. H.P. Benson. An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. Journal of Global Optimization, 13:1–24, 1998.

    MATH  MathSciNet  Google Scholar 

  24. H.P. Benson and S. Sayin. Towards finding global representations of the efficient set in multiple objective mathematical programming. Naval Research Logistics, 44:47–67, 1997.

    Article  MathSciNet  Google Scholar 

  25. H.P. Benson and E. Sun. Outcome space partition of the weight set in multiobjective linear programming. Journal of Optimization Theory and Applications, 105(1):17–36, 2000.

    Article  MathSciNet  Google Scholar 

  26. H. Bernau. Use of exact penalty functions to determine efficient decisions. European Journal of Operational Research, 49:348–355, 1990.

    Article  MATH  Google Scholar 

  27. D. Bhatia and P. Gupta. Generalized linear complementarity problem and multiobjective programming problem. Optimization, 46(2):199–214, 1999.

    MathSciNet  Google Scholar 

  28. G. Bigi and M. Castellani. Second order optimality conditions for differentiable multiobjective programming. RAIRO Operations Research, 34:411–426, 2000.

    MathSciNet  Google Scholar 

  29. G.R. Bitran. Linear multiple objective programs with zero-one variables. Mathematical Programming, 13:121–139, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  30. G.R. Bitran. Theory and algorithms for linear multiple objective programs with zero-one variables. Mathematical Programming, 17:362–390, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  31. G.R. Bitran and J.M. Rivera. A combined approach to solve binary multicriteria problems. Naval Research Logistics Quarterly, 29:181–201, 1982.

    MathSciNet  Google Scholar 

  32. S. Bolintinéanu and M. El Maghri. Second-order efficiency conditions and sensitivity of efficient points. Journal of Optimization Theory and Applications, 98(3):569–592, 1998.

    MathSciNet  Google Scholar 

  33. J. Borwein. Proper efficient points for maximization with respect to cones. SIAM Journal on Control and Optimization, 15(1):57–63, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.M. Borwein. On the existence of Pareto efficient points. Mathematics of Operations Research, 8(1):64–73, 1983.

    MATH  MathSciNet  Google Scholar 

  35. J.M. Borwein and D.M. Zhuang. Super efficiency in convex vector optimization. Zeitschrift für Operations Research, 35(3):175–184, 1991.

    MathSciNet  Google Scholar 

  36. J.M. Borwein and D.M. Zhuang. Super efficiency in vector optimization. Transactions of the American Mathematical Society, 338(1):105–122, 1993.

    MathSciNet  Google Scholar 

  37. V.J. Bowman. On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In H. Thieriez, editor, Multiple Criteria Decision Making, volume 130 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 1976.

    Google Scholar 

  38. R.E. Burkard, H. Keiding, J. Krarup, and P.M. Pruzan. A relationship between optimality and efficiency in multiple criteria 0-1 programming problems. Computers and Operations Research, 8:241–247, 1981.

    Article  Google Scholar 

  39. A. Cambini, L. Martein, and R. Cambini. A new approach to second order optimality conditions in vector optimization. In R. Caballero, F. Ruiz, and R.E. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 219–227. Springer Verlag, Berlin, 1997.

    Google Scholar 

  40. A. Cambini, L. Martein, and I.M. Stancu-Minasian. A survey on bicriteria fractional problems. Mathematic Reports (Bucureésti.), 2(52)(2):127–162, 2000.

    MathSciNet  Google Scholar 

  41. R. Cambini. Second order optimality conditions in multiobjective programming. Optimization, 44(2):139–160, 1998.

    MATH  MathSciNet  Google Scholar 

  42. L.G. Chalmet, L. Lemonidis, and D.J. Elzinga. An algorithm for the bi-criterion integer programming problem. European Journal of Operational Research, 25:292–300, 1986.

    Article  MathSciNet  Google Scholar 

  43. V. Chankong and Y.Y. Haimes. Multiobjective Decision Making Theory and Methodology. Elsevier Science, New York, 1983.

    Google Scholar 

  44. A. Charnes and W. Cooper. Management Models and Industrial Applications of Linear Programming. John Wiley and Sons, New York, 1961.

    Google Scholar 

  45. O. Chernykh. Approximating the Pareto-hull of a convex set by polyhedral sets. Computational Mathematics and Mathematical Physics, 35:1033–1039, 1995.

    MATH  MathSciNet  Google Scholar 

  46. E.U. Choo and A.D. Atkins. Connectedness in multiple linear fractional programming. Management Science, 29(2):250–255, 1983.

    MathSciNet  Google Scholar 

  47. S. Yu. Churkina. Search for efficient solutions of multi-criterion problems by target-level method. Computational Mathematics and Modeling, 13(2):208–214, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  48. C.A. Coello. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems, 1(3):269–308, 1999.

    Google Scholar 

  49. C.A. Coello. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 32(2):109–143, 2000.

    Article  ADS  Google Scholar 

  50. C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston, MA, 2002.

    Google Scholar 

  51. J.L. Cohon. Multiobjective Programming and Planning. Academic Press, New York, 1978.

    Google Scholar 

  52. J.L.. Cohon, R.L. Church, and D.P. Sheer. Generating multiobjective tradeoffs: An algorithm for bicriterion problems. Water Resources Research, 15:1001–1010, 1979.

    Google Scholar 

  53. M.W. Cooper and K. Farhangian. Multi-criteria optimization for nonlinear integervariable problems. Large Scale Systems, 9:73–78, 1985.

    MathSciNet  Google Scholar 

  54. H.W. Corley. An existence result for maximization with respect to cones. Journal of Optimization Theory and Applications, 31(2):277–281, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  55. H.W. Corley. Efficient spanning trees. Journal of Optimization Theory and Applications, 45(3):481–485, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  56. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing — A metaheuristic technique for multiple objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1):34–47, 1998.

    Google Scholar 

  57. N.O. Da Cuhna and E. Polak. Constrained minimization under vector-valued criteria infinite dimensional spaces. Journal of Mathematical Analysis and Applications, 19(1):103–124, 1967.

    MathSciNet  Google Scholar 

  58. I. Das. An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. In Short Paper Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization, volume 2, pages 411–413, 1999.

    Google Scholar 

  59. I. Das and J.E. Dennis. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal of Optimization, 8(3):631–657, 1998.

    Article  MathSciNet  Google Scholar 

  60. J.P. Dauer. On degeneracy and collapsing in the construction of the set of objective values in a multiple objective linear program. Annals of Operations Research, 46/47(1–4):279–292, 1993.

    MathSciNet  Google Scholar 

  61. J.P. Dauer and R.J. Gallagher. A combined constraint-space, objective-space approach for determining high-dimensional maximal efficient faces of multiple objective linear programs. European Journal of Operational Research, 88:368–381, 1990.

    Google Scholar 

  62. J.P. Dauer and Y.H. Liu. Solving multiple objective linear programs in objective space. European Journal of Operational Research, 46:350–357, 1990.

    MathSciNet  Google Scholar 

  63. J.P. Dauer and O.A. Saleh. Constructing the set of efficient objective values in multiple objective linear programs. European Journal of Operational Research, 46:358–365, 1990.

    MathSciNet  Google Scholar 

  64. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester, 2001.

    Google Scholar 

  65. R.F. Deckro and E.P. Winkofsky. Solving zero-one multiple objective programs through implicit enumeration. European Journal of Operational Research, 12:362–274, 1983.

    Article  MathSciNet  Google Scholar 

  66. K. Dörner, W.J. Gutjahr, R.F. Hartl, C. Strauß, and C. Stummer. Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 2003, in print.

    Google Scholar 

  67. A. Ebiefung. Nonlinear mappings associated with the generalized linear complementarity problem. Mathematical Programming, 69(2):255–268, 1995.

    MATH  MathSciNet  Google Scholar 

  68. J.G. Ecker, N.S. Hegner, and I.A. Kouada. Generating all maximal efficient faces for multiple objective linear programs. Journal of Optimization Theory and Applications, 30(3):353–381, 1980.

    Article  MathSciNet  Google Scholar 

  69. J.G. Ecker and I.A. Kouada. Finding efficient points for linear multiple objective programs. Mathematical Programming, 8:375–377, 1975.

    Article  MathSciNet  Google Scholar 

  70. J.G. Ecker and I.A. Kouada. Finding all efficient extreme points for multiple objective linear programs. Mathematical Programming, 14(2):249–261, 1978.

    MathSciNet  Google Scholar 

  71. M. Ehrgott. Discrete decision problems, multiple criteria optimization classes and lexicographic max-ordering. In T.J. Stewart and R.C. van den Honert, editors, Trends in Multicriteria Decision Making, volume 465 of Lecture Notes in Economics and Mathematical Systems, pages 31–44. Springer Verlag, Berlin, 1998.

    Google Scholar 

  72. M. Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 2000.

    Google Scholar 

  73. M. Ehrgott. The balance space approach to multicriteria decision making — Involving the decision maker. Computers & Mathematics with Applications, 44(7):909–923, 2002.

    MATH  MathSciNet  Google Scholar 

  74. M. Ehrgott and E.A. Galperin. Min-max formulation of the balance number in multiobjective global optimization. Computers & Mathematics with Applications, 44(7):899–907, 2002.

    MathSciNet  Google Scholar 

  75. M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22:425–460, 2000.

    MathSciNet  Google Scholar 

  76. M. Ehrgott and X. Gandibleux. Bounds and bound sets for biobjective combinatorial optimization problems. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millenium, volume 507 of Lecture Notes in Economics and Mathematical Systems, pages 242–253. Springer Verlag, Berlin, 2001.

    Google Scholar 

  77. M. Ehrgott and X. Gandibleux. Multiobjective combinatorial optimization. In Multiple Criteria Optimization — State of the Art Annotated Bibliographic Surveys, pages 369–444. Kluwer Academic Publishers, Boston, MA, 2002.

    Google Scholar 

  78. M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization — State of the Art Annotated Bibliographic Surveys, volume 52 of Kluwer’s International Series in Operations Research and Management Science. Kluwer Academic Publishers, Boston, MA, 2002.

    Google Scholar 

  79. M. Ehrgott and X. Gandibleux. Multiple objective combinatorial optimization — A tutorial. In T. Tanino, T. Tanaka, and M. Inuiguchi, editors, Multi-Objective Programming and Goal-Programming, pages 3–18. Springer Verlag, Berlin, 2003.

    Google Scholar 

  80. M. Ehrgott and X. Gandibleux. Approximative solution methods for multiobjective combinatorial optimization. TOP, 12(1):1–88, 2004.

    MathSciNet  Google Scholar 

  81. M. Ehrgott, H.W. Hamacher, K. Klamroth, S. Nickel, A. Schöbel, and M.M. Wiecek. A note on the equivalence of balance points and Pareto solutions in multiple-objective programming. Journal of Optimization Theory and Applications, 92(1):209–212, 1997.

    Article  MathSciNet  Google Scholar 

  82. M. Ehrgott, S. Nickel, and H.W. Hamacher. Geometric methods to solve max-ordering location problems. Discrete Applied Mathematics, 93:3–20, 1999.

    Article  MathSciNet  Google Scholar 

  83. M. Ehrgott and D.M. Ryan. Constructing robust crew schedules with bicriteria optimization. Journal of Multi-Criteria Decision Analysis, 11(3):139–150, 2002.

    Article  Google Scholar 

  84. M. Ehrgott and A.J.V. Skriver. Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach. European Journal of Operational Research, 147:657–664, 2003.

    Article  MathSciNet  Google Scholar 

  85. P. Engrand. A multi-objective approach based on simulated annealing and its application to nuclear fuel management. In Proceedings of the 5th ASME/SFEN/JSME International Conference on Nuclear Engineering. ICONE 5, Nice, France 1997, pages 416–423. American Society of Mechanical Engineers, New York, NY, 1997.

    Google Scholar 

  86. T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multi-objective knapsack problems. In F. Dehne, J.R. Sack, and R. Tamassia, editors, Algorithms and Data Structures. 7th International Workshop, Providence, RI, August 8–10, 2001, volume 2125 of Lecture Notes in Computer Science, pages 210–221. Springer Verlag, Berlin, 2001.

    Google Scholar 

  87. J. Ester and F. Tröltzsch. On generalized notions of efficiency in multicriteria decision making. System Analysis Modelling Simulation, 3:153–161, 1986.

    MathSciNet  Google Scholar 

  88. P.K. Eswaran, A. Ravindran, and H. Moskowitz. Algorithms for nonlinear integer bicriterion programs. Journal of Optimization Theory and Applications, 63(2):261–279, 1989.

    Article  MathSciNet  Google Scholar 

  89. J.P. Evans and R.E. Steuer. A revised simplex method for linear multiple objective programs. Mathematical Programming, 5:375–377, 1973.

    Article  MathSciNet  Google Scholar 

  90. J. Fliege and A. Heseler. Constructing approximations to the efficient set of convex quadratic multiobjective problems. Technical Report Ergebnisberichte Angewandte Mathematik No. 211, Universität Dortmund, Fachbereich Mathematik, 2002.

    Google Scholar 

  91. CM. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, 1993. University of Illinois at Urbana-Champaign, pages 416–423. Morgan Kaufman, San Francisco, CA, 1993.

    Google Scholar 

  92. C.M. Fonseca and P.J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

    Google Scholar 

  93. B. Fruhwirth, R.E. Burkard, and G. Rote. Approximation of convex curves with application to the bicriterial minimum cost flow problem. European Journal of Operational Research, 42:326–388, 1989.

    Article  MathSciNet  Google Scholar 

  94. B. Fruhwirth and K. Mekelburg. On the efficient point set of tricriteria linear programs. European Journal of Operational Research, 72:192–199, 1994.

    Article  Google Scholar 

  95. T. Gal. A general method for determining the set of all efficient solutions to a linear vectormaximum problem. European Journal of Operational Research, 1:307–322, 1977.

    MATH  MathSciNet  Google Scholar 

  96. T. Gal, T. Stewart, and T. Hanne, editors. Multicriteria Decision Making — Advances in MCDM Models, Algorithms, Theory, and Applications, volume 21 of Kluwer’s International Series in Operations Research and Management Science. Kluwer Academic Publishers, Norwell, MA, 2002.

    Google Scholar 

  97. E.A. Galperin. Nonscalarized multiobjective global optimization. Journal of Optimization Theory and Applications, 75(1):69–85, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  98. E.A. Galperin and M. M. Wiecek. Retrieval and use of the balance set in multiobjective global optimization. Computers & Mathematics with Applications, 37(4/5): 111–123, 1999.

    MathSciNet  Google Scholar 

  99. X. Gandibleux, N. Mezdaoui, and A. Fréville. A tabu search procedure to solve multiobjective combinatorial optimization problems. In R. Caballero, F. Ruiz, and R. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 291–300. Springer Verlag, Berlin, 1997.

    Google Scholar 

  100. X. Gandibleux, D. Vancoppenolle, and D. Tuyttens. A first making use of GRASP for solving MOCO problems. Technical report, University of Valenciennes, France, 1998. Paper presented at MCDM 14, June 8–12 1998, Charlottesville, VA.

    Google Scholar 

  101. W.B. Gearhart. Compromise solutions and estimation of the noninferior set. Journal of Optimization Theory and Applications, 28:29–47, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  102. F.W. Gembicki and Y.Y. Haimes. Approach to performance and multiobjective sensitivity optimization: The goal attainment method. IEEE Transactions on Automatic Control, 20:769–771, 1975.

    Article  Google Scholar 

  103. A.M. Geoffrion. Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22:618–630, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  104. C. Gert and P. Weidner. Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 67:297–320, 1990.

    MathSciNet  Google Scholar 

  105. C.J. Goh and X.Q. Yang. Analytic efficient solution set for multi-criteria quadratic programs. European Journal of Operational Research, 92(1):166–181, 1996.

    Article  Google Scholar 

  106. M. Gravel, W.L. Price, and C. Gagné. Scheduling continuous casting of aluminium using a multiple-objective ant colony optimization metaheuristic. European Journal of Operational Research, 143(1):218–229, 2002.

    Article  Google Scholar 

  107. J. Guddat, F. Guerra Vasquez, K. Tammer, and K. Wendler. Multiobjective and Stochastic Optimization Based on Parametric Optimization. Akademie-Verlag, Berlin, 1985.

    Google Scholar 

  108. T.R. Gulati and M.A. Islam. Proper efficiency in a linear fractional vector maximum problem with generalized convex constraints. European Journal of Operational Research, 36(3):339–345, 1988.

    Article  MathSciNet  Google Scholar 

  109. T.R. Gulati and M.A. Islam. Efficiency in linear fractional vector maximization problem with nonlinear constraints. Optimization, 20(4):477–482, 1989.

    MathSciNet  Google Scholar 

  110. B. Gupta. Finding the set of all efficient solutions for the linear fractional multiobjective program with zero-one variables. Opsearch, 18(4):204–214, 1982.

    MathSciNet  Google Scholar 

  111. B. Gupta. Programming with multi-objective linear fractional functionals. Acta Ciencia Indica. Mathematics, 9(1–4):195–201, 1983.

    MATH  MathSciNet  Google Scholar 

  112. R. Gupta and R. Malhotra. Multi-criteria integer linear fractional programming problem. Optimization, 35(4):373–389, 1995.

    MathSciNet  Google Scholar 

  113. M.P. Hansen. Tabu search for multiobjective combinatorial optimization: TAMOCO. Control and Cybernetics, 29(3):799–818, 2000.

    MATH  MathSciNet  Google Scholar 

  114. R. Hartley. On cone-efficiency, cone-convexity and cone-compactness. SIAM Journal on Applied Mathematics, 34(2):211–222, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  115. S. Helbig. On a constructive approximation of the efficient outcomes in bicriterion vector optimization. Journal of Global Optimization, 5:35–48, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  116. A. Helbing. Relations between integer linear vector optimization and multicriteria problems on groups and graphs. Optimization, 38(1):61–71, 1996.

    MATH  MathSciNet  Google Scholar 

  117. M. Henig. Proper efficiency with respect to cones. Journal of Optimization Theory and Applications, 36(3):387–407, 1982.

    MATH  MathSciNet  Google Scholar 

  118. J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Orlando, FL, 29 June–1 July 1994, volume 1, pages 82–87. IEEE Service Center, Piscataway, NJ, 1994.

    Google Scholar 

  119. B.J. Hunt and M.M. Wiecek. Cones to aid decision making in multicriteria programming. In T. Tanino, T. Tanaka, and M. Inuiguchi, editors, Multi-Objective Programming and Goal Programming, pages 153–158. Springer Verlag, Berlin, 2003.

    Google Scholar 

  120. S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with multi colony ant algorithms. In E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, and D. Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, volume 1993 of Lecture Notes in Computer Science, pages 359–372. Springer Verlag, Berlin, 2001.

    Google Scholar 

  121. G. Isac, M.M. Kostreva, and M.M. Wiecek. Multiple-objective approximation of feasible but unsolvable linear complementarity problems. Journal of Optimization Theory and Applications, 86(2):389–405, 1995.

    Article  MathSciNet  Google Scholar 

  122. H. Isermann. The enumeration of the set of all efficient solutions for a linear multiple objective program. Operational Research Quarterly, 28(3):711–725, 1977.

    MATH  Google Scholar 

  123. H. Isermann. Linear lexicographic optimization. OR Spektrum, 4:223–228, 1982.

    Article  MATH  Google Scholar 

  124. A. Ismail-Yahaya and A. Messac. Effective generation of the pareto frontier: the normalized normal constraint method. In 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Denver, CO, April 2002, volume AIAA 2002–1232, 2002.

    Google Scholar 

  125. J. Jahn and A Merkel. Reference point approximation method for the solution of bicriterial nonlinear optimization problems. Journal of Optimization Theory and Applications, 74:87–103, 1992.

    Article  MathSciNet  Google Scholar 

  126. V. Jeyakumar and X.Q. Yang. Convex composite multi-objective nonsmooth programming. Mathematical Programming, 59(3):325–343, 1993.

    Article  MathSciNet  Google Scholar 

  127. B. Jimenez and V. Novo. First and second order sufficient conditions for strict minimality in multiobjective programming. Numerical Functional Analysis and Optimization, 23(3/4):303–322, 2002.

    MathSciNet  Google Scholar 

  128. D. Jones, S.K. Mirrazavi, and M. Tamiz. Multi-objective meta-heuristics: An overview of the current state-of-the-art. European Journal of Operational Research, 137(1):1–9, 2002.

    Article  Google Scholar 

  129. D.F. Jones and M. Tamiz. Goal programming in the period 1900-2000. In M. Ehrgott and X. Gandibleux, editors, Multiple Criteria Optimization: State of the An Annotated Bibliographic Surveys, pages 129–170. Kluwer Academic Publishers, Boston, MA, 2002.

    Google Scholar 

  130. I. Kaliszewski. Enumeration of efficient solutions for bicriteria integer programs by number theoretic approach. Control and Cybernetics, 12:39–54, 1983.

    MATH  MathSciNet  Google Scholar 

  131. I. Kaliszewski. A modified weighted Tchebycheff metric for multiple objective programming. Computers and Operations Research, 14(4):315–323, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  132. I. Kaliszewski. Quantitative Pareto Analysis by Cone Separation Technique. Kluwer Academic Publishers, Dordrecht, 1994.

    Google Scholar 

  133. J. Karaivanova, P. Korhonen, S. Narula, J. Wallenius, and V. Vassilev. A reference direction approach to multiple objective integer linear programming. European Journal of Operational Research, 81:176–187, 1995.

    Google Scholar 

  134. R.N. Kaul and V. Lyall. A note on nonlinear fractional vector maximization. Opsearch, 26(2):108–121, 1989.

    MathSciNet  Google Scholar 

  135. G. Kiziltan and E. Yucaoglu. An algorithm for multiobjective zero-one linear programming. Management Science, 29(12):1444–1453, 1983.

    MathSciNet  Google Scholar 

  136. K. Klamroth, J. Tind, and M.M. Wiecek. Unbiased approximation in multicriteria optimization. Mathematical Methods of Operations Research, 36(3):413–437, 2002.

    MathSciNet  Google Scholar 

  137. D. Klein and E. Hannan. An algorithm for the multiple objective integer linear programming problem. European Journal of Operational Research, 9:378–385, 1982.

    Article  MathSciNet  Google Scholar 

  138. A. Klinger. Improper solutions of the vector maximum problem. Operations Research, 15(3):570–572, 1967.

    MATH  Google Scholar 

  139. P. Korhonen and J. Wallenius. A Pareto race. Naval Research Logistics, 35:615–623, 1988.

    Google Scholar 

  140. P. Korhonen and G.Y. Yu. A reference direction approach to multiple objective quadraticlinear programming. European Journal of Operational Research, 102(3):601–610, 1997.

    Article  Google Scholar 

  141. J.S.H. Kornbluth and R.E. Steuer. On computing the set of all weakly efficient vertices in multiple objective linear fractional programming. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and Application, Lecture Notes in Economics and Mathematical Systems, pages 189–202. Springer Verlag, Berlin, 1980.

    Google Scholar 

  142. M.M. Kostreva and W. Ogryczak. Linear optimization with multiple equitable criteria. RAIRO Operations Research, 33:275–297, 1999.

    MathSciNet  Google Scholar 

  143. M.M. Kostreva and M.M. Wiecek. Linear complementarity problems and multiple objective programming. Mathematical Programming, 60:349–359, 1993.

    Article  MathSciNet  Google Scholar 

  144. M.M. Kostreva, Q. Zheng, and D. Zhuang. A method for approximating solutions of multicriteria nonlinear optimization problems. Optimization Methods and Software, 5:209–226, 1995.

    Google Scholar 

  145. P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications, volume 14 of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  146. K.H. Küfer, A. Scherrer, M. Monz, F. Alonso, H. Trinkaus, T. Bortfeld, and C. Thieke. Intensity-modulated radiotherapy — A large scale multi-criteria programming problem. OR Spectrum, 25(2):223–249, 2003.

    Google Scholar 

  147. H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492. University of California Press, Berkeley, California, 1951.

    Google Scholar 

  148. B. Lemaire. Approximation in multiobjective optimization. Journal of Global Optimization, 2:117–132, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  149. D. Li. Convexification of a noninferior frontier. Journal of Optimization Theory and Applications, 88(1):177–196, 1996.

    MATH  MathSciNet  Google Scholar 

  150. Y. Li, G.M. Fadel, and M.M. Wiecek. Minimum effort approximation of the Pareto space of convex bi-criteria problems. Optimization and Engineering, 4:231–261, 2003.

    Article  MathSciNet  Google Scholar 

  151. J.G. Lin. Multiple-objective problems: Pareto-optimal solutions by methods of proper equality constraints. IEEE Transactions on Automatic Control, 21(5):641–650, 1976.

    MATH  Google Scholar 

  152. F.A. Lootsma, T.W. Athan, and P.Y. Papalambros. Controlling the search for a compromise solution in multi-objective optimization. Enginering Optimization, 25(1):65–81, 1995.

    Google Scholar 

  153. P. Loridan. ɛ-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43:265–276, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  154. B. Malakooti, J. Wang, and E.C. Tandler. A sensor-based accelerated approach for multiattribute machinability and tool life evaluation. International Journal of Production Research, 28:2373, 1990.

    Google Scholar 

  155. E. Marchi and J.A. Oviedo. Lexicographic optimality in the multiple objective linear programming: The nucleolar solution. European Journal of Operational Research, 57:355–359, 1992.

    Article  Google Scholar 

  156. B. Metev and D. Gueorguieva. A simple method for obtaining weakly efficient points in multiobjective linear fractional prgramming problems. European Journal of Operational Research, 126(2):386–390, 2000.

    Article  MathSciNet  Google Scholar 

  157. W. Michalowski and T. Szapiro. A bi-reference procedure for interactive multiple criteria programming. OR, 40(2):247–258, 1992.

    Google Scholar 

  158. K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of International Series in Operations Research and Management Science. Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  159. T. Murata and H. Ishibuchi. MOGA: Multi-objective genetic algorithms. In Proceedings of the 2nd IEEE International Conference on Evolutionary Computing, Perth, Australia, pages 289–294. IEEE Service Center, Piscataway, NJ, 1995.

    Google Scholar 

  160. P.H. Naccache. Connectedness of the set of nondominated outcomes in multicriteria optimization. Journal of Optimization Theory and Applications, 25:459–467, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  161. D. Nam and C.H. Park. Multiobjective simulated annealing: A comparative study to evolutionary algorithms. International Journal of Fuzzy Systems, 2(2):87–97, 2000.

    Google Scholar 

  162. V.N. Nefedov. On the approximation of the Pareto set. USSR Computational Mathematics and Mathematical Physics, 24(4):19–28, 1984.

    Article  MATH  Google Scholar 

  163. P. Neumayer and D. Schweigert. Three algorithms for bicriteria integer linear programs. OR Spectrum, 16:267–276, 1994.

    MathSciNet  Google Scholar 

  164. S. Nickel and M.M. Wiecek. Multiple objective programming with piecewise linear functions. Journal of Multi-Criteria Decision Analysis, 8:322–332, 1999.

    Article  Google Scholar 

  165. W. Ogryczak. Inequality measures and equitable approaches to location problems. European Journal of Operational Research, 122:374–391, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  166. W. Ogryczak. Multiple criteria linear programming model for portfolio selection. Annals of Operations Research, 97:143–162, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  167. G. Parks and A. Suppapitnarm. Multiobjective optimization of PWR reload core designs using simulated annealing. In Proceedings of the International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications. Madrid, Spain, September 1999, volume 2, pages 1435–1444, 1999.

    Google Scholar 

  168. A. Pascoletti and P. Serafini. Scalarizing vector optimization problems. Journal of Optimization Theory and Applications, 42(4):499–524, 1984.

    Article  MathSciNet  Google Scholar 

  169. A.N. Payne. Efficient approximate representation of bi-objective tradeoff sets. Journal of the Franklin Institute, 330:1219–1233, 1993.

    Article  MATH  Google Scholar 

  170. A.N. Payne and E. Polak. An interactive rectangle elimination method for biobjective decision making. IEEE Transactions on Automatic Control, 25(3):421–432, 1980.

    Article  MathSciNet  Google Scholar 

  171. H.J. Payne, E. Polak, D.C. Collins, and W. S. Meisel. An algorithm for bicriteria optimization based on the sensitivity function. IEEE Transactions on Automatic Control, 20(4):546–648, 1975.

    Article  MathSciNet  Google Scholar 

  172. J. Philip. Algorithms for the vector maximization problem. Mathematical Programming, 2:207–229, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  173. J. Philip. Vector maximization at a degenerate vertex. Mathematical Programming, 13:357–359, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  174. E. Polak. On the approximation of solutions to multiple criteria decision making problems. In M. Zeleny, editor, Multiple Criteria Decision Making, volume 123 of Lecture Notes in Economics and Mathematical Systems, pages 271–282. Springer, 1976.

    Google Scholar 

  175. L.I. Poliščuk. Piece-wise linear approximation of the Pareto boundary of convex two-criteria problems (Russian). In Models and Methods of Investigating Economic Systems, pages 108–116. Nauka Sibirsk. Otdel., Novosibirsk, 1979.

    Google Scholar 

  176. C. Romero. A general structure of achievement function for a goal programming model. European Journal of Operational Research, 153:675–686, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  177. B. Roy. Problems and methods with multiple objective functions. Mathematical Programming, 1:239–266, 1971.

    Article  MATH  Google Scholar 

  178. S. Ruzika and M. M. Wiecek. A survey of approximation methods in multiobjective programming. Technical Report 90, Department of Mathematics, University of Kaiserslautern, 2003.

    Google Scholar 

  179. J.K. Sankaran. On a variant of lexicographic multi-objective programming. European Journal of Operational Research, 107:669–674, 1998.

    Article  MATH  Google Scholar 

  180. Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization. Academic Press, Orlando, 1985.

    Google Scholar 

  181. S. Sayin. An algorithm based on facial decomposition for finding the efficient set in multiple objective linear programming. Operations Research Letters, 19:87–94, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  182. S. Sayin. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Mathematical Programming, 87:543–560, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  183. J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, Nashville, TN, 1984.

    Google Scholar 

  184. B. Schandl, K. Klamroth, and M.M. Wiecek. Norm-based approximation in bicriteria programming. Computational Optimization and Applications, 20:23–42, 2001.

    Article  MathSciNet  Google Scholar 

  185. B. Schandl, K. Klamroth, and M.M. Wiecek. Introducing oblique norms into multiple criteria programming. Journal of Global Optimization, 23:81–97, 2002.

    Article  MathSciNet  Google Scholar 

  186. B. Schandl, K. Klamroth, and M.M. Wiecek. Norm-based approximation in multicriteria programming. Computers and Mathematics with Applications, 44(7):925–942, 2002.

    Article  MathSciNet  Google Scholar 

  187. K.P. Schönfeld. Effizienz und Dualität in der Aktivitätsanlyse (German). PhD thesis, Freie Universität Berlin, Germany, 1964.

    Google Scholar 

  188. P. Serafini. Some considerations about computational complexity for multi objective combinatorial problems. In J. Jahn and W. Krabs, editors, Recent advances and historical development of vector optimization, volume 294 of Lecture Notes in Economics and Mathematical Systems, pages 222–232. Springer Verlag, Berlin, 1986.

    Google Scholar 

  189. P. Serafini. Simulated annealing for multiobjective optimization problems. In Proceedings of the 10th International Conference on Multiple Criteria Decision Making, Taipei-Taiwan, volume I, pages 87–96, 1992.

    Google Scholar 

  190. P.S. Shelokar, S. Adhikari, R. Vakil, V.K. Jayaraman, and B.D. Kulkarni. Multiobjective ant algorithm for continuous function optimization: Combination of strength Pareto fitness assignment and thermo-dynamic clustering. Foundations of Computing and Decision Sciences Journal, 25(4):213–230, 2000.

    Google Scholar 

  191. A.M. Skulimowski. Decision Support Systems Based on Reference Sets, volume 40 of Dissertations Monographies. Wydawnictwa AGH, Krakow, 1996.

    Google Scholar 

  192. I.M. Sobol’ and Y.L. Levitan. Error estimates for the crude approximation of the tradeoff curve. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making, volume 448 of Lecture Notes in Economics and Mathematical Systems, pages 83–92. Springer, Berlin, 1997.

    Google Scholar 

  193. R.M. Soland. Multicriteria optimization: A general characterization of efficient solutions. Decision Sciences, 10:26–38, 1979.

    Google Scholar 

  194. R. Solanki. Generating the noninferior set in mixed integer biobjective linear programs: an application to a location problem. Computers and Operations Research, 18:1–15, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  195. R.S. Solanki, P.A. Appino, and J.L. Cohon. Approximating the noninferior set in multiobjective linear programming problems. European Journal of Operational Research, 68:356–373, 1993.

    Article  Google Scholar 

  196. Y. Sonntag and C. Zălinescu. Comparison of existence results for efficient points. JOTA, 105(1):161–188, 2000.

    Article  Google Scholar 

  197. N. Srinivas and K. Deb. Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

    Google Scholar 

  198. R.B. Statnikov and J. Matusov. Use of ρτ-nets for the approximation of the Edgeworth-Pareto set in multicriteria optimization. Journal of Optimization Theory and Applications, 91(3):543–560, 1996.

    Article  MathSciNet  Google Scholar 

  199. R.B. Statnikov and J.B. Matusov. Multicriteria Optimization and Engineering. Chapman & Hall, New York, 1995.

    Google Scholar 

  200. R. Steuer. Random problem generation and the computation of efficient extreme points in multiple objective linear programming. Computational Optimization and Applications, 3:333–347, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  201. R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John Wiley & Sons, New York, NY, 1985.

    Google Scholar 

  202. R.E. Steuer. ADBASE: A multiple objective linear programming solver. Technical report, Terry College of Business, University of Georgia, Athens, GA, 30602 USA, 2000.

    Google Scholar 

  203. R.E. Steuer and E.U. Choo. An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26:326–344, 1983.

    MathSciNet  Google Scholar 

  204. L.W.G. Strijbosch, A.G.M. Van Doorne, and W.J. Selen. A simplified MOLP algorithm: The MOLP-S procedure. Computers and Operations Research, 18(8):709–716, 1991.

    Article  Google Scholar 

  205. M. Sun. Applying tabu search to multiple objective combinatorial optimization problems. In Proceedings of the 1997 DSI Annual Meeting, San Diego, California, volume 2, pages 945–947. Decision Sciences Institute, Atlanta, GA, 1997.

    Google Scholar 

  206. M. Sun, A. Stam, and R. Steuer. Solving multiple objective programming problems using feed-forward artificial neural networks: The interactive FFANN procedure. Management Science, 42(6):835–849, 1996.

    Google Scholar 

  207. M. Sun, A. Stam, and R. Steuer. Interactive multiple objective programming using Tchebycheff programs and artificial neural networks. Computers and Operations Research, 27:601–620, 2000.

    Article  Google Scholar 

  208. M. Tamiz and D. Jones. Goal programming and Pareto efficiency. Journal of Information & Optimization Sciences, 17(2):291–307, 1996.

    MathSciNet  Google Scholar 

  209. M.L. TenHuisen and M.M. Wiecek. Vector optimization and generalized Lagrangian duality. Annals of Operations Research, 51:15–32, 1994.

    Article  MathSciNet  Google Scholar 

  210. M.L. TenHuisen and M.M. Wiecek. Efficiency and solution approaches to bicriteria nonconvex programs. Journal of Global Optimization, 11(3):225–251, 1997.

    Article  MathSciNet  Google Scholar 

  211. J. Tind and M. M. Wiecek. Augmented Lagrangian and Tchebycheff approaches in multiple objective programming. Journal of Global Optimization, 14:251–266, 1999.

    Article  MathSciNet  Google Scholar 

  212. E.L. Ulungu. Optimisation combinatoire multicritère: Détermination de l’ensemble des solutions efficaces et méthodes interactives. PhD thesis, Faculté des Sciences, Université de Mons-Hainaut. Mons, Belgium, 1993.

    Google Scholar 

  213. B. Villarreal and M.H. Karwan. Multicriteria integer programming: A (hybrid) dynamic programming recursive approach. Mathematical Programming, 21:204–223, 1981.

    Article  MathSciNet  Google Scholar 

  214. B. Villarreal and M.H. Karwan. Multicrietria dynamic programming with an application to the integer case. Journal of Optimization Theory and Applications, 38(1):43–69,1982.

    Article  MathSciNet  Google Scholar 

  215. V. Voinalovich. External approximation to the Pareto set in criterion space for multicriterion linear programming tasks. Cybernetics and Computing Technology, 1:135–142, 1984.

    Google Scholar 

  216. S. Wang. Second-order necessary and sufficient conditions in multiobjective programming. Numerical Functional Analysis and Optimization, 12(1–2):237–252, 1991.

    MATH  MathSciNet  Google Scholar 

  217. A. Warburton. Aproximation of Pareto optima in multiple-objective shortest-path problems. Operations Research, 35(1):70–79, 1987.

    MATH  MathSciNet  Google Scholar 

  218. A.R. Warburton. Quasiconcave vector maximization: Connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives. Journal of Optimization Theory and Applications, 40:537–557, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  219. P. Weidner. Complete efficiency and interdependencies between objective functions in vector optimization. Zeitschrift für Operations Research, 34:91–15, 1990.

    MATH  MathSciNet  Google Scholar 

  220. R.E. Wendell and D.N. Lee. Efficiency in multiple objective optimization problems. Mathematical Programming, 12(3):406–414, 1977.

    MathSciNet  Google Scholar 

  221. D.J. White. A branch and bound method for multiobjective Boolean problems. European Journal of Operational Research, 15(1):126–130, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  222. D.J. White. Epsilon efficiency. Journal of Optimization Theory and Applications, 49(2):319–337, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  223. D.J. White. Weighting factor extensions for finite multiple objective vector minimization problems. European Journal of Operational Research, 36:256–265, 1988.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  224. D.J. White. A characterisation of the feasible set of objective function vectors in linear multiple objective problems. European Journal of Operational Research, 52:361–366, 1991.

    Article  MATH  Google Scholar 

  225. M.M. Wiecek, W. Chen, and J. Zhang. Piecewise quadratic approximation of the nondominated set for bi-criteria programs. Journal of Multi-Criteria Decision Analysis, 10:35–47, 2001.

    Article  Google Scholar 

  226. M.M. Wiecek and H. Zhang. A parallel algorithm for multiple objective linear programs. Computational Optimization and Applications, 8(1):41–56, 1997.

    Article  MathSciNet  Google Scholar 

  227. A.P. Wierzbicki. A methodological guide to multiobjective optimization. In K. Iracki, K. Malanowski, and S. Walukiewicz, editors, Optimization Techniques, Part 1, volume 22 of Lecture Notes in Control and Information Sciences, pages 99–123. Springer, Berlin, 1980.

    Google Scholar 

  228. A.P. Wierzbicki. A methodological approach to comparing parametric characterizations of efficient solutions. In G. Fandel, M. Grauer, A. Kurzhanski, and A.P. Wierzbicki, editors, Large-scale modelling and interactive decision analysis, volume 273 of Lecture Notes in Economics and Mathematical Systems, pages 27–45. Springer Verlag, Berlin, 1986.

    Google Scholar 

  229. A.P. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum, 8(2):73–87, 1986.

    MATH  MathSciNet  Google Scholar 

  230. X.Q. Yang and C.J. Goh. A method for convex curve approximation. European Journal of Operational Research, 97:205–212, 1997.

    Article  Google Scholar 

  231. P.L. Yu. A class of solutions for group decision making. Management Science, 19(8):936–946, 1973.

    MATH  Google Scholar 

  232. P.L. Yu. Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives. Journal of Optimization Theory and Applications, 14:319–377, 1974.

    MATH  MathSciNet  Google Scholar 

  233. P.L. Yu and M. Zeleny. The set of all nondominated solutions in linear cases and a multicriteria simplex method. Journal of Mathematical Analysis and Applications, 49:430–468, 1975.

    Article  MathSciNet  Google Scholar 

  234. P.L. Yu and M. Zeleny. Linear multiparametric programming by multicriteria simplex method. Management Science, 23(2):159–170, 1976.

    MathSciNet  Google Scholar 

  235. M. Zeleny. Compromise programming. In J.L. Cochrane and M. Zeleny, editors, Multiple Criteria Decision Making, pages 262–301. University of South Carolina Press, Columbia, SC, 1973.

    Google Scholar 

  236. M. Zeleny. Linear Multiobjective Programming, volume 95 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1974.

    Google Scholar 

  237. S. Zionts and J. Wallenius. Identifying efficient vectors: Some theory and computational results. Operations Research, 28(3):785–793, 1980.

    Google Scholar 

  238. E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Ehrgott, M., Wiecek, M.M. (2005). Mutiobjective Programming. In: Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol 78. Springer, New York, NY. https://doi.org/10.1007/0-387-23081-5_17

Download citation

Publish with us

Policies and ethics