Skip to main content

Abstract

Computer-Aided Design (CAD) in Electrical and Computer Engineering abounds with modeling, simulation and optimization challenges that are familiar to operations researchers. Many of these problems are on a far larger scale and of much greater complexity than usual (millions of variables and constraints), so CAD researchers have of necessity developed techniques for approximation and decomposition in order to cope. The goal of this article is to bridge the gap between the two communities so that each can learn from the other. We briefly review some of the most common O.R.-related problems in CAD, and sketch some CAD techniques for handling problems of extreme scale. We also mention emerging CAD topics that are in particular need of assistance from operations researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Achar and M. Nakhla. Efficient transient Simulation of embedded subnetworks characterized by S-parameters in the presence of nonlinear elements. IEEE Transactions on Microwave Theory and Techniques, 46(12): 2356–2363, 1998.

    Article  Google Scholar 

  2. R. Achar and M. Nakhla. Signal Propagation on Interconnects. In H. Grabinski, editor, Minimum Realization of Reduced-Order Models of High-Speed Interconnect Macromodels, Boston, 1998. Kluwer Academic Publishers.

    Google Scholar 

  3. R. Achar, M. Nakhla, P. Gunupudi and E. Chiprout. Passive interconnect reduction algorithm for distributed/measured networks. IEEE Transactions on Circuits and Systems-II, 47(4): 287–301, 2000.

    Article  Google Scholar 

  4. R. Achar, M. Nakhla and Q. J. Zhang. Full-wave analysis of high-speed interconnects using complex frequency hopping. IEEE Transactions on Computer-Aided Design, 17(10) 997–1016, Oct. 1998.

    Article  Google Scholar 

  5. N. Ari and W. Blumer. Analytic formulation of the response of a two-wire transmission line excited by a plane wave. IEEE Transactions on Electromagnetic Compatibility, 30(4): 437–448, 1988.

    Article  Google Scholar 

  6. G.A. Baker Jr. Essential of Padé Approximants. Academic, New York, 1975.

    Google Scholar 

  7. H.B. Bakoglu. Circuits, Interconnections and packaging for VLSI. Addison-Wesley, Reading MA, 1990.

    Google Scholar 

  8. J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny and R.H. Hemmers. Space mapping technique for electromagnetic optimization. IEEE Transactions on Microwave Theory and Techniques, 42(12): 2536–2544, 1994.

    Article  Google Scholar 

  9. J.W. Bandler and S.H. Chen. Circuit optimization: the state of the art. IEEE Transactions on Microwave Theory and Techniques, vol. 36(2): 424–443, 1988.

    Article  Google Scholar 

  10. J.W. Bandler, Q.S. Cheng, S. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard. Space mapping: the state of the art. IEEE Transactions on Microwave Theory and Techniques, 52(10): 337–361, 2004.

    Article  Google Scholar 

  11. J.W. Bandler and Q.J. Zhang. Next generation optimization methodologies for wireless and microwave circuit design. In IEEE Microwave Theory and Techniques Society International Topical Symposium on Technologies for Wireless Applications Digest, Vancouver, B.C., pages 5–8, Feb. 1999.

    Google Scholar 

  12. P. Bernardi, R. Cicchetti and C. Pirone. Transient response of a microstrip line circuit excited by an external electromagnetic source. IEEE Transactions on Electromagnetic Compatibility, 34(2): 100–108, 1992.

    Article  Google Scholar 

  13. W.T. Beyene, and J.E. Schutt-Aine. Efficient transient simulation of highspeed interconnects characterized by sampled data. Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, 21(1): 105–113, 1998.

    Article  Google Scholar 

  14. J.E. Bracken, V. Raghavan, and R.A. Rohrer. Interconnect simulation with asymptotic waveform evaluation (AWE). IEEE Transactions on Circuits and Systems, 39(11): 869–878, 1992.

    Article  MATH  Google Scholar 

  15. F.H. Branin, Jr. Transient analysis of lossless transmission lines. Proceedings of the IEEE, 55(12): 2012–2013, 1967.

    Google Scholar 

  16. G.J. Burke, E. K. Miller, and S. Chakrabarti. Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions. IEEE Transactions on Magnetics, 25(4): 2087–2089, 1989.

    Article  Google Scholar 

  17. A.C. Cangellaris, S. Pasha, J. L. Prince and M. Celik. A new discrete timedomain model for passive model order reduction and macromodelling of high-speed interconnections. IEEE Transactions on Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, 22(2): 356–364, 1999.

    Google Scholar 

  18. M. Celik and A. C. Cangellaris. Simulation of dispersive multiconductor transmission lines by Padé approximation via Lanczos process. IEEE Transactions on Microwave Theory and Techniques, 44(12): 2525–2535, 1996.

    Article  Google Scholar 

  19. M. Celik, A. C. Cangellaris and A. Deutsch. A new moment generation technique for interconnects characterized by measured or calculated Sparameters. In IEEE International Microwave Symposium Digest, pp. 196–201, June 1996.

    Google Scholar 

  20. F.Y. Chang. Transient analysis of lossless coupled transmission lines in a nonhomogeneous medium. IEEE Transactions on Microwave Theory and Techniques, 18(9): 616–626, Sept. 1970.

    Article  Google Scholar 

  21. P.C. Cherry and M.F. Iskander. FDTD analysis of high frequency electronic interconnection effects. IEEE Transactions on Microwave Theory and Techniques, 43(10): 2445–2451, 1995.

    Article  Google Scholar 

  22. E. Chiprout and M. Nakhla. Asymptotic Waveform Evaluation and Moment Matching for Interconnect Analysis. Kluwer Academic Publishers, Boston, 1993.

    Google Scholar 

  23. E. Chiprout, M. Nakhla. Analysis of interconnect networks using complex frequency hopping. IEEE Transactions on Computer-Aided Design, 14(2): 186–199, 1995.

    Article  Google Scholar 

  24. B.J. Cooke, J.L. prince and A.C. Cangellaris. S-parameter analysis of multiconductor integrated circuit interconnect systems. IEEE Transactions on Computer-Aided Design, 11(3): 353–360, Mar. 1992.

    Article  Google Scholar 

  25. S.D. Corey and A.T. Yang. Interconnect characterization using time-domain reflectometry. IEEE Transactions on Microwave Theory and Techniques, 43(9): 2151–2156, 1995.

    Article  Google Scholar 

  26. W.W.M. Dai (guest editor). Special issue on simulation, modeling, and electrical design of high-speed and high-density interconnects. IEEE Transactions on Circuits and Systems, 39(11): 857–982, 1992.

    Google Scholar 

  27. A. Deustsch. Electrical characteristics of interconnections for highperformance systems. Proceedings of the IEEE, 86(2): 315–355, 1998.

    Google Scholar 

  28. V. Devabhaktuni, M.C.E. Yagoub, Y. Fang, J.J. Xu and Q.J. Zhang. Neural networks for microwave modeling: model development issues and nonlinear techniques. International Journal on Radio Frequency and Microwave Computer-Aided Engineering, 11(1): 4–21, 2001.

    Article  Google Scholar 

  29. T. Dhane and D.D. Zutter. Selection of lumped element models for coupled lossy transmission lines. IEEE Transactions on Computer-Aided Design, 11(7): 959–967, 1992.

    Google Scholar 

  30. X. Ding, V.K. Devabhaktuni, B. Chattaraj, M.C.E. Yagoub, M. Doe, J.J. Xu and Q.J. Zhang. Neural network approaches to electromagnetic based modeling of passive components and their applications to high-frequency and high-speed nonlinear circuit optimization. IEEE Transactions on Microwave Theory and Techniques, 52(1): 436–449, 2004.

    Article  Google Scholar 

  31. A.R. Djordjevié and T.K. Sarkar. Closed-form formulas for frequencydependent resistance and inductance per unit length of microstrip and strip transmission lines. IEEE Transactions on Microwave Theory and Techniques, 42(2): 241–248, 1994.

    Article  Google Scholar 

  32. A. Dounavis, R. Achar and M. Nakhla. Efficient passive circuit models for distributed networks with frequency-dependent parameters. IEEE Transactions on Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, 23(3): 382–392, 2000.

    Google Scholar 

  33. A. Dounavis, E. Gad, R. Achar and M. Nakhla. Passive model-reduction of multiport distributed networks including frequency-dependent parameters. IEEE Transactions on Microwave Theory and Techniques, 48(12): 2325–2334, 2000.

    Article  Google Scholar 

  34. A. Dounavis, X. Li, M. Nakhla and R. Achar. Passive closed-loop transmission line model for general purpose circuit simulators. IEEE Transactions on Microwave Theory and Techniques, 47(12): 2450–2459, Dec. 1999.

    Article  Google Scholar 

  35. R. Drechsler. Evolutionary Algorithms for VLSI CAD. Kluwer Academic Publishers, Boston, 1998.

    Google Scholar 

  36. I.M. Elfadel and D.D. Ling. A block rational Arnoldi algorithm for multiport passive model-order reduction of multiport RLC networks. Proceedings of ICCAD-97, pp. 66–71, Nov. 1997.

    Google Scholar 

  37. I. Erdin, R. Khazaka and M. Nakhla. Simulation of high-speed interconnects in the presence of incident field. IEEE Transactions on Microwave Theory and Techniques, 46(12): 2251–2257, 1998.

    Article  Google Scholar 

  38. Y. Fang, M.C.E. Yagoub, F. Wang and Q.J. Zhang. A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks. IEEE Transactions on Microwave Theory and Techniques, 48(12): 2335–2344, 2000.

    Article  Google Scholar 

  39. J.B. Faria. Multiconductor Transmission Line Structures. John Wiley and Sons Inc., New York, 1993.

    Google Scholar 

  40. P. Feldmann and R.W. Freund. Efficient linear circuit analysis by Padé via Lanczos process. IEEE Transactions on Computer-Aided Design, 14(5): 639–649, 1995.

    Article  Google Scholar 

  41. P. Feldmann and R.W. Freund. Reduced order modeling of large linear subcircuits via a block Lanczos algorithm. Proceedings of the Design Automation Conference, pp. 474–479, June 1995.

    Google Scholar 

  42. R.W. Freund. Reduced-order modelling techniques based on Krylov subspace and their use in circuit simulation. Technical Memorandum, Lucent Technologies, 1998.

    Google Scholar 

  43. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  44. G.G.E. Gielen and R.A. Rutenbar. Computer-Aided Design of Analog and Mixed-Signal Integrated Circuits. Proceedings of the IEEE, 88(12): 1825–1852, 2000.

    Google Scholar 

  45. R. Goyal. Managing signal integrity [PCB Design]. IEEE Spectrum, 31(3): 54–58, 1994.

    Article  Google Scholar 

  46. R. Griffith, E. Chiprout, Q.J. Zhang, and M. Nakhla. A CAD framework for simulation and optimization of high-speed VLSI interconnections. IEEE Transactions on Circuits and Systems, 39(11): 893–906, 1992.

    Article  MATH  Google Scholar 

  47. P. Gunupudi, M. Nakhla and R. Achar. Simulation of high-speed distributed interconnects using Krylov-subspace techniques. IEEE Transactions on CAD of Integrated Circuits and Systems, 19(7): 799–808, 2000.

    Article  Google Scholar 

  48. IEEE, IEEE Xplore, World Wide Web, http://ieeexplore.ieee.org/Xplore/, 2004.

    Google Scholar 

  49. I. Ierdin, M. Nakhla, and R. Achar. Circuit analysis of electromagnetic radiation and field coupling effects for networks with embedded full-wave modules. IEEE Transactions on Electromagnetic Compatibility, 42(4): 449–460, 2000.

    Article  Google Scholar 

  50. T. Itoh and R. Mittra. Spectral Domain approach for calculating the dispersion Characteristics of microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 21(2): 496–499, 1973.

    Article  Google Scholar 

  51. R.H. Jansen. Spectral Domain Approach for microwave integrated circuits. IEEE Transactions on Microwave Theory and Techniques. 33(2): 1043–1056, 1985.

    Article  MathSciNet  Google Scholar 

  52. H.W. Johnson and M. Graham. High-speed Digital Design. Prentice-Hall, New Jeersey, 1993.

    Google Scholar 

  53. Y. Kami and R. Sato. Circuit-concept approach to externally excited transmission lines. IEEE Transactions on Electromagnetic Compatibility, 27(4): 177–183, 1985.

    Google Scholar 

  54. M. Kamon, F. Wang and J. White. Generating nearly optimally compact models from Krylov-subspace based reduced-order models. IEEE Transactions on Circuits and Systems, 47(4): 239–248, 2000.

    Article  Google Scholar 

  55. K.J. Kerns and A.T. Yang. Preservation of passivity during RLC network reduction via split congruence transformations. IEEE Transactions on Computer-Aided Design, 17(17): 582–591, 1998.

    Article  Google Scholar 

  56. R. Khazaka, E. Chiprout, M. Nakhla and Q. J. Zhang. Analysis of high-speed interconnects with frequency dependent parameters. Proceedings of the International Symposium on Electromagnetic Compatibility, pp. 203–208, Zurich, March 1995.

    Google Scholar 

  57. R. Khazaka and M. Nakhla. Analysis of high-speed interconnects in the presence of electromagnetic interference. IEEE Transactions on Microwave Theory and Techniques, 46(6): 940–947, July 1998.

    Article  Google Scholar 

  58. S.Y. Kim, N. Gopal, and L.T. Pillage. Time-domain macromodels for VLSI interconnect analysis. IEEE Transactions on Computer-Aided Design, 13(10): 1257–1270, 1994.

    Article  Google Scholar 

  59. M.A. Kolbehdari, M. Srinivasan, M. Nakhla, Q.J. Zhang and R. Achar. Simultaneous time and frequency domain solution of EM problems using finite element and CFH techniques. IEEE Transactions on Microwave Theory and Techniques, 44(9): 1526–1534, Sept. 1996.

    Article  Google Scholar 

  60. S. Kumashiro, R. A. Rohrer, A. J. Strojwas. Asymptotic waveform evaluation for transient analysis of 3-D interconnect structures. IEEE Transactions on Computer-Aided Design, 12(7): 988–996, 1993.

    Article  Google Scholar 

  61. S. Lin and E. S. Kuh. Transient simulation of lossy interconnects based on the recursive convolution formulation. IEEE Transactions on Circuits and Systems, 39(11): 879–892, 1992.

    Article  MATH  Google Scholar 

  62. S. Lum, M.S. Nakhla and Q.J. Zhang. Sensitivity analysis of lossy coupled transmission lines with nonlinear terminations. IEEE Transactions on Microwave Theory and Techniques, 42(4): 607–615, 1994.

    Article  Google Scholar 

  63. J.H. McCabe. A formal extension of the Padé table to include two point Padé quotients. J. Inst. Math. Applic., 15: 363–372, 1975.

    MATH  MathSciNet  Google Scholar 

  64. D. Mirshekar-Syahkal. Spectral Domain Method for Microwave Integrated Circuits. Wiley & Sons Inc., New York, 1990.

    Google Scholar 

  65. E.S.M. Mok, G.I. Costache. Skin-effect considerations on transient response of a transmission line excited by an electromagnetic wave. IEEE Transaction on Electromagnetic Compability, 34(3): 320–329, 1992.

    Article  Google Scholar 

  66. M. Nakhla and R. Achar. Chapter XVII: Interconnect Modelling and Simulation. In W.-K. Chen, editor, The VLSI Handbook, pp. 17.1–17.29, Boca Raton, 2000. CRC Press.

    Google Scholar 

  67. M. Nakhla and A. Ushida (Guest Editors). Special issue on modelling and simulation of high-speed interconnects. IEEE Transactions on Circuits and Systems, 39(11): 857–982, 2000.

    Google Scholar 

  68. A. Odabasioglu, M. Celik and L. T. Pillage. PRIMA: Passive Reduced-Order Interconnect Macromodeling Algorithm. IEEE Transactions on Computer-Aided Design, 17(8): 645–654, Aug. 1998.

    Article  Google Scholar 

  69. A. Odabasioglu, M. Celik and L. T. Pillage. Practical considerations for passive reduction of RLC circuits. Proceedings of the Design Automation Conference, pp. 214–219, June 1999.

    Google Scholar 

  70. F. Olyslager, D.D. Zutter, and K. Blomme. Rigorous analysis of the propagation characteristics of general lossless and lossy multiconductor transmission lines in multi-layered media. IEEE Transactions on Microwave Theory and Techniques, 41(1): 79–88, 1993.

    Article  Google Scholar 

  71. F. Olyslager, D. D. Zutter, and A. T. de Hoop. New reciprocal circuit model for lossy waveguide structures based on the orthogonality of the eigenmodes. IEEE Transactions on Microwave Theory and Techniques, 42(12): 2261–2269, 1994.

    Article  Google Scholar 

  72. C.R. Paul. Frequency response of multiconductor transmission lines illuminated by an incident electromagnetic field. IEEE Transactions on Microwave Theory and Techniques, 22(4): 454–457, 1976.

    Article  Google Scholar 

  73. C.R. Paul. A comparison of the Contributions of Common-Mode and Differential-Mode Currents in Radiated Emissions. IEEE Transactions on Electromagnetic Compatibility, 31(2): 189–193, 1989.

    Article  Google Scholar 

  74. C.R. Paul. A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field. IEEE Transactions on Electromagnetic Compatibility, 36(4): 342–354, Nov. 1994.

    Article  Google Scholar 

  75. C.R. Paul. Analysis of Multiconductor Transmission Lines. John Wiley and Sons Inc., New York, 1994.

    Google Scholar 

  76. C.R. Paul. Literal solutions for the time-domain response of a two-conductor transmission line excited by an incident electromagnetic field. IEEE Transactions on Electromagnetic Compatibility, 37(2): 241–251, 1995.

    Article  Google Scholar 

  77. M. Picket-May, A. Taflove and J. Baron. FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads. IEEE Transactions on Microwave Theory and Techniques, 42(8): 1514–1523, 1994.

    Article  Google Scholar 

  78. L.T. Pillage and R.A. Rohrer. Asymptotic waveform evaluation for timing analysis. IEEE Transactions on Computer-Aided Design, 9(4): 352–366, Apr. 1990.

    Article  Google Scholar 

  79. R.K. Poon. Computer Circuits Electrical Design, Prentice-Hall, New Jersey, 1995.

    Google Scholar 

  80. T.L. Quarles. The SPICE3 Implementation Guide. Technical Report ERLM89/44, University of California, Berkeley, 1989.

    Google Scholar 

  81. V. Raghavan, J. E. Bracken, and R. A. Rohrer. AWESpice: A general tool for accurate and efficient simulation of interconnect problems. In Proceedings of the ACM/IEEE Design Automation Conference, pp. 87–92, June 1992.

    Google Scholar 

  82. S.M. Sait and H. Youssef. VLSI Physical Design Automation: Theory and Practice. IEEE Press, New York, 1995.

    Google Scholar 

  83. R. Sanaie, E. Chiprout, M. Nakhla, and Q. J. Zhang. A fast method for frequency and time domain simulation of high-speed VLSI interconnects. IEEE Transactions on Microwave Theory and Techniques, 42(12): 2562–2571, 1994.

    Article  Google Scholar 

  84. J.E. Schutt-Aine and R. Mittra. Scattering parameter transient analysis of transmission lines loaded with nonlinear terminations. IEEE Transactions on Microwave Theory and Techniques, 36(3): 529–536, 1988.

    Article  Google Scholar 

  85. Semiconductor Research Corporation. SRC Physical Design Top Ten Problems. World Wide Web, http://www.src.org/member/sa/eadts/pd.asp, 2004.

    Google Scholar 

  86. N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic Publishers, Boston, 1993.

    Google Scholar 

  87. L.M. Silviera, M. Kamen, I. Elfadel and J. White. A coordinate transformed Arnoldi algorithm for generating guaranteed stable reduced-order models for RLC circuits. Technical Digest of the International Conference on Computer-Aided Design, pp. 2288–294, Nov. 1996.

    Google Scholar 

  88. L.M. Silveira, M. Kamen and J. White. Efficient reduced-order modelling of frequency-dependent coupling inductances associated with 3-D interconnect structures. IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B: Advanced Packaging, 19(2): 283–288, 1996.

    Article  Google Scholar 

  89. A.A. Smith. A more convenient form of the equations for the response of a transmission line excited by nonuniform fields. IEEE Transactions on Electromagnetic Compatibility, 15(3): 151–152, Aug. 1973.

    Google Scholar 

  90. M.B. Steer, J.W. Bandler and C.M. Snowden. Computer aided design of RF and microwave circuits and systems. IEEE Transactions on Microwave Theory and Techniques, 50(3): 996–1005, 2002.

    Article  Google Scholar 

  91. T. Tang and M. Nakhla. Analysis of high-speed VLSI interconnect using asymptotic waveform evaluation technique. IEEE Transactions on Computer-Aided Design, 11(3): 341–352, 1992.

    Article  Google Scholar 

  92. T. Tang, M. Nakhla and Richard Griffith. Analysis of lossy multiconductor transmission lines using the asymptotic waveform evaluation technique. IEEE Transactions on Microwave Theory and Techniques, 39(12): 2107–2116, 1991.

    Article  Google Scholar 

  93. C.D. Taylor, R.S. Satterwhite, and C.W. Harrison. The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field. IEEE Transactions on Antennas and Propagation, 13(11): 987–989, 1965.

    Article  Google Scholar 

  94. L.P. Vakanas, A.C. Cangellaris and O.A. Palusinski. Scattering parameter based simulation of transients in lossy, nonlinearly terminated packaging interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, 17(4): 472–479, 1994.

    Article  Google Scholar 

  95. R. Wang, and O. Wing. A circuit model of a system of VLSI interconnects for time response computation. IEEE Transactions on Microwave Theory and Techniques, 39(4): 688–693, April 1991.

    Article  Google Scholar 

  96. F. Wang and Q.J. Zhang. Knowledge based neural models for microwave design. IEEE Transactions on Microwave Theory and Techniques, 45(12): 2333–2343, 1997.

    Article  Google Scholar 

  97. Y.J. Wei, Q.J. Zhang and M.S. Nakhla. Multilevel optimization of highspeed VLSI interconnect networks by decomposition. IEEE Transactions on Microwave Theory and Techniques, 42(9): 1638–1650, 1994.

    Article  Google Scholar 

  98. I. Wuyts and D. De Zutter. Circuit model for plane-wave incidence on multiconductor transmission lines. IEEE Transaction on Electromagnetic Compatibility, 36(3): 206–212, 1994.

    Article  Google Scholar 

  99. D. Xie and M. Nakhla. Delay and crosstalk simulation of high speed VLSI interconnects with nonlinear terminations. IEEE Transactions on Computer-Aided Design, 12(11): 1798–1811, 1993.

    Article  Google Scholar 

  100. J.J. Xu, M.C.E. Yagoub, R. Ding and Q.J. Zhang. Neural-based dynamic modeling of nonlinear microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 50(12): 2769–2780, 2002.

    Article  Google Scholar 

  101. C. Yen, Z. Fazarinc, and R.L. Wheeler. Time-Domain Skin-Effect Model for Transient Analysis of Lossy Transmission Lines. Proceedings of the IEEE, 70(5): 750–757, 1982.

    Article  Google Scholar 

  102. Q. Yu and E.S. Kuh. Exact moment-matching model of transmission lines and application to interconnect delay estimation. IEEE Transactions on VLSI, 3(2): 311–322, 1995.

    Article  Google Scholar 

  103. Q. Yu, J. M. L. Wang and E. S. Kuh. Passive multipoint moment-matching model order reduction algorithm on multiport distributed interconnect networks. IEEE Transactions on Circuits and Systems-I, 46(1): 140–160, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  104. A.H. Zaabab, Q.J. Zhang, and M.S. Nakhla. A neural network modeling approach to circuit optimization and statistical design. IEEE Transactions on Microwave Theory and Techniques, 43(6): 1349–1358, 1995.

    Article  Google Scholar 

  105. Q.J. Zhang and G.L. Creech (Guest Editors). Special Issue on Applications of Artificial Neural Networks for RF and Microwave Design. International Journal of RF and Microwave Computer-Aided Engineering, Wiley, New York, 1999.

    Google Scholar 

  106. Q.J. Zhang and K.C. Gupta. Neural Networks for RF and Microwave Design, Artech House, Boston, 2000.

    Google Scholar 

  107. Q.J. Zhang, K.C. Gupta and V.K. Devabhaktuni. Artificial neural networks for RF and microwave design: from theory to practice. IEEE Transactions on Microwave Theory and Techniques, 51(4): 1339–1350, 2003.

    Article  Google Scholar 

  108. Q.J. Zhang and M. Mongiardo (Guest Editors). 2nd Special Issue on Application of ANN for RF and Microwave Design. International Journal of RF and Microwave Computer-Aided Engineering, Wiley, New York, 2002.

    Google Scholar 

  109. Q.J. Zhang, F. Wang and M.S. Nakhla. Optimization of high-speed VLSI interconnects: a review. International Journal on Microwave and Millimeterwave Computer-Aided Engineering, Special Issue on Optimization Oriented Microwave CAD, 7(1): 83–107, 1997.

    Article  Google Scholar 

  110. G. Zheng, Q. J. Zhang, M. Nakhla and R. Achar. An efficient approach for simulation of measured subnetworks with complex frequency hopping. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design, pp. 23–26, Nov. 1996, San Jose, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Chinneck, J.W., Nakhla, M.S., Zhang, Q. (2005). Computer-Aided Design for Electrical and Computer engineering. In: G, H.J. (eds) Tutorials on Emerging Methodologies and Applications in Operations Research. International Series in Operations Research & Management Science, vol 76. Springer, New York, NY. https://doi.org/10.1007/0-387-22827-6_6

Download citation

Publish with us

Policies and ethics