Skip to main content

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 76))

Abstract

Polyhedral combinatorics is a rich mathematical subject motivated by integer and linear programming. While not exhaustive, this survey covers a variety of interesting topics, so let’s get right to it!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Balas and M. Fischetti. Polyhedral theory for the asymmetric traveling salesman problem. In The traveling salesman problem and its variations, pages 117–168. Kluwer, 2002.

    Google Scholar 

  2. D. Bienstock, M. Goemans, D. Simchi-Levi, and David Williamson. A note on the prizecollecting traveling salesman problem. Mathematical Programming, Series A, 59(3):413–420, 1993.

    Article  MathSciNet  Google Scholar 

  3. S. Boyd and R. D. Carr. A new bound for the radio between the 2-matching problem and its linear relaxation. Mathematical Programming, Series A, 86(3):499–514, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. D. Carr, T. Fujito, G. Konjevod, and O. Parekh. A 2 1/10 approximation algorithm for a generalization of the weighted edge-dominating set problem. Journal of Combinatorial Optimization, 5:317–326, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. D. Carr and G. Lancia. Compact vs. exponential-size LP relaxations. Operations Research Letters, 30(1):57–65, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. D. Carr and S. Vempala. Towards a 4/3-approximation for the asymmetric traveling salesman problem. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 116–125, 2000.

    Google Scholar 

  7. V. ChvĂ¡tal. Linear programming. Freeman, 1983.

    Google Scholar 

  8. E. V. Denardo. Dynamic programming: theory and practice. Prentice-Hall, 1978.

    Google Scholar 

  9. S. de Vries, M. E. Posner, and R. Vohra. Polyhedral properties of the K-median problem on a tree. No 1367 in Discussion Papers, Northwestern University, Center for Mathematical Studies in Economics and Management Science, 42 pages, 2003.

    Google Scholar 

  10. J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards, 71B:233–240, 1967.

    MathSciNet  Google Scholar 

  11. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.

    MATH  Google Scholar 

  12. A. M. H. Gerards. Matching. In Network models, volume 7 of Handbooks in Operations Research, pages 135–224. Elsevier, 1995.

    Google Scholar 

  13. M. Goemans. Worst-case comparison of valid inequalities for the TSP. Mathematical Programming, 69:335–349, 1995.

    MATH  MathSciNet  Google Scholar 

  14. M. Grötschel, L. LovĂ¡sz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer Verlag, 1988.

    Google Scholar 

  15. M. Grötschel and L. LovĂ¡sz. Combinatorial optimization. In Handbook of combinatorics, volume 2, pages 1541–1597. Elsevier, 1995.

    Google Scholar 

  16. D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems. In Approximation algorithms for NP-hard problems, pages 94–143. PWS, 1997.

    Google Scholar 

  17. T. Ibaraki. Solvable classes of discrete dynamic programming. Journal of Mathematical Analysis and Applications, 43:642–693, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. G. Jeroslow. On defining sets of vertices of the hypercube by linear inequalities. Discrete Mathematics, 11:119–124, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. JĂ¼nger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In Network models, volume 7 of Handbooks in Operations Research, pages 225–329. Elsevier, 1995.

    Google Scholar 

  20. V. Kaibel and M. Pfetsch. Some algorithmic problems in polytope theory. In Algebra, Geometry and Software Systems, pages 23–47. Springer Verlag, 2003. arXiv:math.CO/0202204v1.

    Google Scholar 

  21. R. M. Karp and M. Held. Finite state processes and dynamic programming. SIAM Journal of Applied Mathematics, 15:693–718, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Könemann, G. Konjevod, O. Parekh, and A. Sinha. Improved approximation algorithms for tour and tree covers. In Proceedings of APPROX 2000, volume 1913 of Lecture Notes in Computer Science, pages 184–193, 2000.

    Google Scholar 

  23. G. Konjevod, R. Ravi, and A. Srinivasan. Approximation algorithms for the covering Steiner problem. Random Structures & Algorithms, 20:465–482, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Korte and J. Vygen. Combinatorial optimization. Theory and algorithms. Springer Verlag, 2000.

    Google Scholar 

  25. T. L. Magnanti and L. A. Wolsey. Optimal trees. In Network models, volume 7 of Handbooks in Operations Research, pages 503–615. Elsevier, 1995.

    Google Scholar 

  26. R. K. Martin, R. Rardin, and B. A. Campbell. Polyhedral characterizations of discrete dynamic programming. Operations Research, 38(1):127–138, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. K. Martin. Using separations algorithms to generate mixed integer model reformulations. Operations Research Letters, 10(3):119–128, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Naddef. Polyhedral theory and branch-and-cut algorithms for the symmetric TSP. In The traveling salesman problem and its variations, pages 29–116. Kluwer, 2002.

    Google Scholar 

  29. G. L. Nemhauser and L. E. Trotter. Properties of vertex packing and independence system polyhedra. Mathematical Programming, 6:48–61, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

    Google Scholar 

  31. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  32. O. Parekh. Edge-dominating and hypomatchable sets. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 287–291, 2002.

    Google Scholar 

  33. W. R. Pulleyblank. Polyhedral combinatorics. In Optimization, volume 1 of Handbooks in Operations Research, pages 371–446. Elsevier, 1989.

    Google Scholar 

  34. W. R. Pulleyblank. Matchings and extensions. In Handbook of combinatorics, volume 1, pages 179–232. Elsevier, 1995.

    MATH  MathSciNet  Google Scholar 

  35. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

    Google Scholar 

  36. A. Schrijver. Polyhedral combinatorics. In Handbook of combinatorics, volume 2, pages 1649–1704. Elsevier, 1995.

    MATH  MathSciNet  Google Scholar 

  37. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer Verlag, 2003.

    Google Scholar 

  38. D. B. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound: a monotonicity property with application. Information Processing Letters, 35:281–285, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Tamir. An O(pn 2) algorithm for the p-median and related problems on tree graphs. Operations Research Letters, 19(2):59–64, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Terlaky and S. Zhang. Pivot rules for linear programming: a survey on recent theoretical developments. Annals of Operations Research, 46:203–233, 1993.

    Article  MathSciNet  Google Scholar 

  41. V. V. Vazirani. Approximation algorithms. Springer Verlag, 2001.

    Google Scholar 

  42. L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study, 13:121–134, 1980.

    MATH  MathSciNet  Google Scholar 

  43. M. Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences, 43(3):441–466, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  44. G. Ziegler. Lectures on Polytopes. Springer, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Carr, R.D., Konjevod, G. (2005). Polyhedral Combinatorics. In: G, H.J. (eds) Tutorials on Emerging Methodologies and Applications in Operations Research. International Series in Operations Research & Management Science, vol 76. Springer, New York, NY. https://doi.org/10.1007/0-387-22827-6_2

Download citation

Publish with us

Policies and ethics