Skip to main content

Serum Markers of Fibrillar Collagen Metabolism in Cardiac Diseases

  • Chapter
Interstitial Fibrosis in Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 253))

  • 679 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beltrami, C.A., et al., Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation, 1994. 89: p. 151–63.

    PubMed  CAS  ISI  Google Scholar 

  2. Rossi, M.A., Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens, 1998. 16: p. 1031–41.

    PubMed  CAS  Google Scholar 

  3. Weber, K.T., C.G. Brilla, and J.S. Janicki, Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res, 1993. 27: p. 341–8.

    Article  PubMed  CAS  Google Scholar 

  4. Diez, J., et al., Clinical aspects of hypertensive myocardial fibrosis. Curr Opin Cardiol, 2001. 16: p. 328–35.

    Article  PubMed  CAS  Google Scholar 

  5. Laurent, G.J., Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol, 1987. 252: p. C1–9.

    PubMed  CAS  Google Scholar 

  6. Nimmi, N., Fibrillar Collagens: their biosynthesis, molecular structure, and mode of assembly. In Extracellular Matrix, Zern, M.A., Reid, L,M., eds. New York, NY: Marcel Dekker, 1993: p. 121–148.

    Google Scholar 

  7. Janicki, J., Collagen degradation in the heart. In Molecular Biology of Collagen Matrix in the Heart, Eghbali-Webb ed. Austin, TX: RG Landes, 1995: p. 61–76.

    Google Scholar 

  8. Risteli, L. and J. Risteli, Noninvasive methods for detection of organ fibrosis. In Focus on Connective Tissue in Health and Disease, Rojkind, M., ed. Boca Raton, FL: CRC Press, 1990: p. 61–68.

    Google Scholar 

  9. Smedsrod, B., et al., Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J, 1990.271: p. 345–50.

    PubMed  CAS  Google Scholar 

  10. Risteli, J., et al., Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem, 1993. 39: p. 635–40.

    PubMed  CAS  Google Scholar 

  11. Jensen, L.T. and N.B. Host, Collagen: scaffold for repair or execution. Cardiovasc Res, 1997. 33: p. 535–9.

    Article  PubMed  CAS  Google Scholar 

  12. Jensen, L.T., et al., Collagen metabolism during wound healing in rats. The aminoterminal propeptide of type III procollagen in serum and wound fluid in relation to formation of granulation tissue. APMIS, 1993. 101: p. 557–64.

    PubMed  CAS  ISI  Google Scholar 

  13. Lopez, B., et al., Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension, 2001. 38: p. 1222–6.

    PubMed  CAS  ISI  Google Scholar 

  14. Diez, J., et al., Serum markers of collagen type I metabolism in spontaneously hypertensive rats: relation to myocardial fibrosis. Circulation, 1996. 93: p. 1026–32.

    PubMed  CAS  ISI  Google Scholar 

  15. Varo, N., et al., Losartan inhibits the post-transcriptional synthesis of collagen type I and reverses left ventricular fibrosis in spontaneously hypertensive rats. J Hypertens, 1999. 17: p. 107–14.

    PubMed  CAS  Google Scholar 

  16. Varo, N., et al., Chronic AT(1) blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension, 2000. 35: p. 1197–202.

    PubMed  CAS  ISI  Google Scholar 

  17. Camilion de Hurtado, M.C., et al., Regression of cardiomyocyte hypertrophy in SHR following chronic inhibition of the Na+/H+ exchanger. Cardiovasc Res, 2002. 53: p. 862–8.

    PubMed  CAS  Google Scholar 

  18. Diez, J. and C. Laviades, Monitoring fibrillar collagen turnover in hypertensive heart disease. Cardiovasc Res, 1997. 35: p. 202–5.

    PubMed  CAS  Google Scholar 

  19. Diez, J., et al., Increased serum concentrations of procollagen peptides in essential hypertension. Relation to cardiac alterations. Circulation, 1995. 91: p. 1450–6.

    PubMed  CAS  ISI  Google Scholar 

  20. Laviades, C., et al., Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation, 1998. 98: p. 535–40.

    PubMed  CAS  ISI  Google Scholar 

  21. Laviades, C., N. Varo, and J. Diez, Transforming growth factor beta in hypertensives with cardiorenal damage. Hypertension, 2000. 36: p. 517–22.

    PubMed  CAS  ISI  Google Scholar 

  22. Querejeta, R., et al., Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation, 2000. 101: p. 1729–35.

    PubMed  CAS  ISI  Google Scholar 

  23. Lopez, B., et al., Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation, 2001. 104: p. 286–91.

    PubMed  CAS  ISI  Google Scholar 

  24. Diez, J., et al., Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation, 2002. 105: p. 2512–7.

    Article  PubMed  CAS  ISI  Google Scholar 

  25. Laviades, C., G. Mayor, and J. Diez, Treatment with lisinopril normalizes serum concentrations of procollagen type III amino-terminal peptide in patients with essential hypertension. Am J Hypertens, 1994. 7: p. 52–8.

    PubMed  CAS  Google Scholar 

  26. Timms, P.M., et al., Plasma tissue inhibitor of metalloproteinase-1 levels are elevated in essential hypertension and related to left ventricular hypertrophy. Am J Hypertens, 2002. 15: p. 269–72.

    Article  PubMed  CAS  Google Scholar 

  27. Host, N.B., et al., Thrombolytic therapy of acute myocardial infarction alters collagen metabolism. Cardiology, 1994. 85: p. 323–33.

    PubMed  CAS  ISI  Google Scholar 

  28. Peuhkurinen, K.J., et al., Thrombolytic therapy with streptokinase stimulates collagen breakdown. Circulation, 1991. 83: p. 1969–75.

    PubMed  CAS  ISI  Google Scholar 

  29. Host, N.B., et al., The aminoterminal propeptide of type III procollagen provides new information on prognosis after acute myocardial infarction. Am J Cardiol, 1995. 76: p. 869–73.

    PubMed  CAS  Google Scholar 

  30. Host, N.B., et al., Effect on collagen metabolism of thrombolytic therapy with tissue-plasminogen activator. A randomized, placebo-controlled study. Eur J Clin Invest, 1995. 25: p. 15–8.

    Article  PubMed  CAS  Google Scholar 

  31. Uusimaa, P., et al., Collagen scar formation after acute myocardial infarction: relationships to infarct size, left ventricular function, and coronary artery patency. Circulation, 1997. 96: p. 2565–72.

    PubMed  CAS  ISI  Google Scholar 

  32. Klappacher, G., et al., Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol, 1995. 75: p. 913–8.

    Article  PubMed  CAS  Google Scholar 

  33. Zannad, F., et al., Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation, 2000. 102: p. 2700–6.

    PubMed  CAS  ISI  Google Scholar 

  34. Maceira, A.M., et al., Ultrasonic backscatter and serum marker of cardiac fibrosis in hypertensives. Hypertension, 2002. 39: p. 923–8.

    Article  PubMed  CAS  ISI  Google Scholar 

  35. Schwartzkopff, B., et al., Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension, 2000. 36: p. 220–5.

    PubMed  CAS  ISI  Google Scholar 

  36. Brilla, C.G., R.C. Funck, and H. Rupp, Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation, 2000. 102: p. 1388–93.

    PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Diez, J. (2005). Serum Markers of Fibrillar Collagen Metabolism in Cardiac Diseases. In: Villarreal, F.J. (eds) Interstitial Fibrosis in Heart Failure. Developments in Cardiovascular Medicine, vol 253. Springer, New York, NY. https://doi.org/10.1007/0-387-22825-X_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-22825-X_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22824-2

  • Online ISBN: 978-0-387-22825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics