Skip to main content

Turmoil in the Cardiac Myocyte: Acute Intracellular Activation of Matrix Metalloproteinases

  • Chapter
Interstitial Fibrosis in Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 253))

  • 683 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gross, J. and C. Lapiere, Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA, 1962. 54: p. 1197–1204.

    Google Scholar 

  2. Woessner, J., The matrix metalloproteinase family. In: Matrix Metalloproteinases Parks, W., Mecham, R., eds. San Diego, CA: Academic Press., 1998: p. 1–14.

    Google Scholar 

  3. Morgunova, E., et al., Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science, 1999. 284: p. 1667–70.

    Article  PubMed  CAS  ISI  Google Scholar 

  4. Nagase, H., Activation mechanisms of matrix metalloproteinases. Biol Chem, 1997.378: p. 151–60.

    PubMed  CAS  Google Scholar 

  5. Strongin, A.Y., et al., Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem, 1995. 270: p. 5331–8.

    PubMed  CAS  Google Scholar 

  6. Holmbeck, K.,et al., MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell, 1999.99: p. 81–92.

    Article  PubMed  CAS  ISI  Google Scholar 

  7. Ruangpanit, N., et al., Gelatinase A (MMP-2) activation by skin fibroblasts: dependence on MT1-MMP expression and fibrillar collagen form. Matrix Biol, 2001. 20: p. 193–203.

    Article  PubMed  CAS  ISI  Google Scholar 

  8. Kang, T., H. Nagase, and D. Pei, Activation of membrane-type matrix metalloproteinase 3 zymogen by the proprotein convertase furin in the trans-Golgi network. Cancer Res, 2002. 62: p. 675–81.

    PubMed  CAS  ISI  Google Scholar 

  9. Sato, H., et al., Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett, 1996. 393: p. 101–4.

    Article  PubMed  CAS  ISI  Google Scholar 

  10. Pei, D. and S.J. Weiss, Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature, 1995. 375: p. 244–7.

    Article  PubMed  CAS  ISI  Google Scholar 

  11. Rajagopalan, S., et al., Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest, 1996. 98: p.2572–9

    PubMed  CAS  Google Scholar 

  12. Okamoto, T., et al., Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys, 1997. 342: p. 261–74.

    Article  PubMed  CAS  Google Scholar 

  13. Okamoto, T., et al., Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem, 2001. 276: p. 29596–602.

    PubMed  CAS  Google Scholar 

  14. Brew, K., D. Dinakarpandian, and H. Nagase, Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 2000. 1477: p. 267–83.

    PubMed  CAS  Google Scholar 

  15. Williamson, R.A., et al., Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP). Biochem J, 1990. 268: p. 267–74.

    PubMed  CAS  Google Scholar 

  16. Li, Y.Y., C.F. McTiernan, and A.M. Feldman, Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res, 1999. 42: p. 162–72.

    PubMed  CAS  Google Scholar 

  17. Stetler-Stevenson, W.G., N. Bersch, and D.W. Golde, Tissue inhibitor of metalloproteinase-2 (TIMP-2)has erythroid-potentiating activity. FEBS Lett, 1992.296: p. 231–4.

    Article  PubMed  CAS  Google Scholar 

  18. Hayakawa, T., et al., Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett, 1992. 298: p. 29–32.

    Article  PubMed  CAS  ISI  Google Scholar 

  19. Pavloff, N., et al., A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. J Biol Chem, 1992. 267: p. 17321–6.

    PubMed  CAS  Google Scholar 

  20. Wu, I. and M.A. Moses, Cloning and expression of the cDNA encoding rat tissue inhibitor of metalloproteinase 3 (TIMP-3). Gene, 1996. 168: p. 243–6.

    Article  PubMed  CAS  ISI  Google Scholar 

  21. Qi, J.H., et al., A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med, 2003. 9: p. 407–15.

    Article  PubMed  CAS  Google Scholar 

  22. Greene, J., et al., Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem, 1996. 271: p. 30375–80.

    PubMed  CAS  Google Scholar 

  23. Tummalapalli, C.M., B. J. Heath, and S.C. Tyagi, Tissue inhibitor of metalloproteinase-4 instigates apoptosis in transformed cardiac fibroblasts. J Cell Biochem, 2001.80: p. 512–21.

    Article  PubMed  CAS  Google Scholar 

  24. Dollery, C.M., et al., TIMP-4 is regulated by vascular injury in rats. Circ Res, 1999. 84: p. 498–504.

    PubMed  CAS  Google Scholar 

  25. Schulze, C., et al., Imbalance between tissue inhibitor of metalloproteinase-4 and matrix metalloproteinases during acute myocardial ischemia-reperfusion injury. Circulation, 2003. 107: p. 2487–92.

    Article  PubMed  CAS  ISI  Google Scholar 

  26. Golub, L.M., et al., Tetracyclines inhibit connective tissue breakdown by multiple nonantimicrobial mechanisms. Adv Dent Res, 1998. 12: p. 12–26.

    Article  PubMed  CAS  Google Scholar 

  27. Coker, M.L., et al., Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol, 1999. 277: p. H777–87.

    PubMed  CAS  Google Scholar 

  28. Siwik, D.A., D.L. Chang, and W.S. Colucci, Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res, 2000. 86: p. 1259–65.

    PubMed  CAS  Google Scholar 

  29. Tyagi, S.C., S. Kumar, and G. Glover, Induction of tissue inhibitor and matrix metalloproteinase by serum in human heart-derived fibroblast and endomyocardial endothelial cells. J Cell Biochem, 1995. 58: p. 360–71.

    Article  PubMed  CAS  Google Scholar 

  30. May, A.E., et al., Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation, 2002. 106: p. 2111–7.

    Article  PubMed  CAS  ISI  Google Scholar 

  31. Galis, Z.S., et al., Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res, 1994. 75: p. 181–9.

    PubMed  CAS  Google Scholar 

  32. Yu, A., A. Murphy, and W. Stetler-Stevenson, 72-kDa gelatinase (gelatinase A): structure activation, regulation and substrate specificity. In: Matrix Metalloproteinases. Parkds, W., Mecham, R., eds San Diego, CA: Academic Press., 1998: p. 85–114.

    Google Scholar 

  33. Vu, T. and Z. Werb, Gelatinase B: Structure, Regulation and Function, In: Matrix Metalloproteinases. Parks, WC., Mecham, R., eds. San Diego, CA: Academic Press., 1998: p. 115–148.

    Google Scholar 

  34. Peterson, J.T., et al., Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation, 2001. 103: p. 2303–9.

    PubMed  CAS  ISI  Google Scholar 

  35. Ducharme, A., et al., Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest, 2000. 106: p. 55–62.

    PubMed  CAS  Google Scholar 

  36. King, M.K., et al., Selective matrix metalloproteinase inhibition with developing heart failure: effects on left ventricular function and structure. Circ Res, 2003.92: p. 177–85.

    Article  PubMed  CAS  Google Scholar 

  37. Spinale, F.G., et al., A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation, 2000. 102: p. 1944–9.

    PubMed  CAS  ISI  Google Scholar 

  38. Blankenberg, S., et al., Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation, 2003. 107: p. 1579–85

    Article  PubMed  CAS  ISI  Google Scholar 

  39. Creemers, E.E., et al., Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol, 2003. 284: p. H364–71.

    CAS  Google Scholar 

  40. Thomas, C.V., et al., Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation, 1998. 97: p. 1708–15.

    PubMed  CAS  ISI  Google Scholar 

  41. Li, Y.Y., et al., Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation, 1998. 98: p. 1728–34.

    PubMed  CAS  ISI  Google Scholar 

  42. Rouet-Benzineb, P., et al., Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP-9 in myosin-heavy chain degradation. Eur J Heart Fail, 1999. 1: p. 337–52.

    PubMed  CAS  Google Scholar 

  43. Fedak, P.W., et al., Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. Am J Physiol, 2003. 284: p. H626–34.

    CAS  Google Scholar 

  44. Li, Y.Y., et al., Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation, 2001. 104: p. 1147–52.

    PubMed  CAS  ISI  Google Scholar 

  45. Sawicki, G., et al., Release of gelatinase A during platelet activation mediates aggregation. Nature, 1997. 386: p. 616–9.

    Article  PubMed  CAS  ISI  Google Scholar 

  46. Galt, S.W., et al., Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet function. Circ Res, 2002. 90: p. 1093–9.

    Article  PubMed  CAS  Google Scholar 

  47. McQuibban, G.A., et al., Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science, 2000. 289: p. 1202–6.

    Article  PubMed  CAS  ISI  Google Scholar 

  48. Fernandez-Patron, C., M.W. Radomski, and S.T. Davidge, Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res, 1999. 85: p. 906–11.

    PubMed  CAS  Google Scholar 

  49. Fernandez-Patron, C., et al., Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through generation of endothelin-1[1-32]. FASEB J, 2001. 15: p. 2230–40.

    Article  PubMed  CAS  ISI  Google Scholar 

  50. Fernandez-Patron, C., et al., Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circ Res, 2000.87: p. 670–6.

    PubMed  CAS  Google Scholar 

  51. Heyndrickx, G.R., et al., Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest, 1975. 56: p. 978–85.

    Article  PubMed  CAS  Google Scholar 

  52. Braunwald, E. and R.A. Kloner, The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation, 1982. 66: p. 1146–9.

    PubMed  CAS  ISI  Google Scholar 

  53. Markis, J.E., et al., Myocardial salvage after intracoronary thrombolysis with streptokinase in acute myocardial infarction. N Engl J Med, 1981. 305: p. 777–82.

    Article  PubMed  CAS  Google Scholar 

  54. Bolli, R. and E. Marban, Molecular and cellular mechanisms of myocardial stunning. Physiol Rev, 1999. 179: p. 609–34.

    Google Scholar 

  55. Lopaschuk, G.D., Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Am J Cardiol, 1998. 82 (5A): p. 14K–17K.

    Article  PubMed  CAS  Google Scholar 

  56. Yasmin, W., K.D. Strynadka, and R. Schulz, Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res, 1997. 33: p. 422–32.

    Article  PubMed  CAS  Google Scholar 

  57. Gao, W.D., et al., Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+-dependent proteolysis? Circ Res, 1996. 78: p. 455–65.

    PubMed  CAS  Google Scholar 

  58. Cheung, P.Y., et al., Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation, 2000. 101: p. 1833–9.

    PubMed  CAS  ISI  Google Scholar 

  59. Prasan, A.M., et al., Duration of ischaemia determines matrix metalloproteinase-2 activation in the reperfused rabbit heart. Proteomics, 2002. 2: p. 1204–10.

    Article  PubMed  CAS  ISI  Google Scholar 

  60. Lalu, M.M., et al., Preconditioning decreases ischemia/reperfusion-induced release and activation of matrix metalloproteinase-2. Biochem Biophys Res Commun, 2002. 296: p. 937–41.

    Article  PubMed  CAS  Google Scholar 

  61. Ferdinandy, P. and R. Schulz, Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol, 2003. 138: p. 532–43.

    PubMed  CAS  Google Scholar 

  62. Csonka, C., et al., Preconditioning decreases ischemia/reperfusion-induced peroxynitrite formation. Biochem Biophys Res Commun, 2001. 285: p. 1217–9.

    Article  PubMed  CAS  Google Scholar 

  63. Romanic, A.M., et al., Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovasc Res, 2002. 54: p. 549–58.

    Article  PubMed  CAS  Google Scholar 

  64. Chen, H., et al., TGF-beta 1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. Am J Physiol, 2003. 284: p. H1612–7.

    CAS  Google Scholar 

  65. Li, D., et al., LOX-1 inhibition in myocardial ischemia-reperfusion injury: modulation of MMP-1 and inflammation. Am J Physiol, 2002. 283: p. H1795–801.

    CAS  Google Scholar 

  66. Wang, W., et al., Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation, 2002. 106: p. 1543–9.

    PubMed  CAS  ISI  Google Scholar 

  67. Baghelai, K., et al., Decreased expression of tissue inhibitor of metalloproteinase 1 in stunned myocardium. J Surg Res, 1998. 77: p. 35–9.

    Article  PubMed  CAS  Google Scholar 

  68. Rohde, L.E., et al., Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation, 1999. 99: p. 3063–70.

    PubMed  CAS  ISI  Google Scholar 

  69. McDonough, J.L., D.K. Arrell, and J.E. Van Eyk, Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res, 1999. 84: p. 9–20.

    PubMed  CAS  Google Scholar 

  70. Van Eyk, J.E., et al., Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. Circ Res, 1998. 82: p. 261–71.

    PubMed  Google Scholar 

  71. Gao, W.D., et al., Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res, 1997. 80: p. 393–9.

    PubMed  CAS  Google Scholar 

  72. Matsumura, Y., et al., Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res, 1996. 79: p. 447–54.

    PubMed  CAS  Google Scholar 

  73. Eberhardt, F., et al., Structural myocardial changes after coronary artery surgery. Eur J Clin Invest, 2000. 30: p. 938–46.

    Article  PubMed  CAS  Google Scholar 

  74. Papp, Z., J. van der Velden, and G.J. Stienen, Calpain-I induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of rat heart. Cardiovasc Res, 2000. 45: p. 981–93.

    Article  PubMed  CAS  Google Scholar 

  75. Van Eyk, J.E. and A.M. Murphy, The role of troponin abnormalities as a cause for stunned myocardium. Coron Artery Dis, 2001. 12: p. 343–7.

    PubMed  Google Scholar 

  76. Murphy, A.M., et al., Transgenic mouse model of stunned myocardium. Science, 2000. 287: p. 488–91.

    Article  PubMed  CAS  ISI  Google Scholar 

  77. Toyo-Oka, T., Phosphorylation with cyclic adenosine 3’:5’ monophosphate-dependent protein kinase renders bovine cardiac troponin sensitive to the degradation by calciumactivated neutral protease. Biochem Biophys Res Commun, 1982. 107: p.44–50.

    PubMed  CAS  Google Scholar 

  78. Sorimachi, Y., et al,, Downregulation of calpastatin in rat heart after brief ischemia and reperfusion. J Biochem (Tokyo), 1997. 122: p. 743–8.

    CAS  Google Scholar 

  79. Mayers, I., et al., Cardiac surgery increases the activity of matrix metalloproteinases and nitric oxide synthase in human hearts. J Thorac Cardiovasc Surg, 2001. 122: p. 746–52.

    Article  PubMed  CAS  Google Scholar 

  80. Coker, M.L., et al., Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol, 2001. 281: p. H543–51.

    CAS  Google Scholar 

  81. Ferrari, R., et al., Occurrence of oxidative stress during reperfusion of the human heart. Circulation, 1990. 81: p. 201–11.

    PubMed  CAS  ISI  Google Scholar 

  82. Wang, P. and J.L. Zweier, Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem, 1996. 271: p. 29223–30.

    PubMed  CAS  Google Scholar 

  83. Schulz, R., et al., Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency. Am J Physiol, 1997. 272: p. H1212–9.

    PubMed  CAS  Google Scholar 

  84. Wang, W., G. Sawicki, and R. Schulz, Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res, 2002. 53: p. 165–74.

    Article  PubMed  CAS  Google Scholar 

  85. Ferdinandy, P., et al., Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res, 2000. 87: p. 241–7.

    PubMed  CAS  Google Scholar 

  86. Gao, C.Q., et al., Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res, 2003. 57: p. 426–33.

    PubMed  CAS  Google Scholar 

  87. Frears, E.R., et al., Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett, 1996. 381: p. 21–4.

    Article  PubMed  CAS  ISI  Google Scholar 

  88. Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996. 271: p. C1424–37.

    PubMed  CAS  Google Scholar 

  89. Lu, L., et al., Matrix metalloproteinases and collagen ultrastructure in moderate myocardial ischemia and reperfusion in vivo. Am J Physiol, 2000. 279: p. H601–9.

    CAS  Google Scholar 

  90. Danielsen, C.C., H. Wiggers, and H.R. Andersen, Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol, 1998. 30: p. 1431–42.

    PubMed  CAS  Google Scholar 

  91. Wiggers, H., et al., Ischemia and reperfusion of the porcine myocardium: effect on collagen. J Mol Cell Cardiol, 1997. 29: p. 289–99.

    Article  PubMed  CAS  Google Scholar 

  92. Thomas, S.A., et al., Absence of troponin I degradation or altered sarcoplasmic reticulum uptake protein expression after reversible ischemia in swine. Circ Res, 1999. 85: p. 446–56.

    PubMed  CAS  Google Scholar 

  93. Kim, S. J., et al., A novel mechanism for myocardial stunning involving impaired Ca(2+) handling. Circ Res, 2001. 89: p. 831–7.

    PubMed  CAS  Google Scholar 

  94. Kudej, R.K., et al., Brief increase in carbohydrate oxidation after reperfusion reverses myocardial stunning in conscious pigs. Circulation, 2002. 106: p. 2836–41.

    Article  PubMed  CAS  ISI  Google Scholar 

  95. Lindsey, M., et al., Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation, 2001. 103: p. 2181–7.

    PubMed  CAS  ISI  Google Scholar 

  96. Sherman, A.J., et al., Myofibrillar disruption in hypocontractile myocardium showing perfusion-contraction matches and mismatches. Am J Physiol, 2000.278: p. H1320–34.

    CAS  Google Scholar 

  97. Kloner, R.A., K. Przyklenk, and G.L. Kay, Clinical evidence for stunned myocardium after coronary artery bypass surgery. J Card Surg, 1994. 9: p. S397–402.

    Google Scholar 

  98. Gray, R., et al., Scintigraphic and hemodynamic demonstration of transient left ventricular dysfunction immediately after uncomplicated coronary artery bypass grafting. J Thorac Cardiovasc Surg, 1979. 77: p. 504–10.

    PubMed  CAS  Google Scholar 

  99. Breisblatt, W.M., et al., Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass surgery. J Am Coll Cardiol, 1990. 15: p. 1261–9.

    Article  PubMed  CAS  Google Scholar 

  100. Pasini, E., et al., Cardiac matrix metalloproteinase activation in patients undergoing coronary artery bypass grafting. J Mol Cell Cardiol, 2002. 34: p. A49.

    Google Scholar 

  101. Joffs, C., et al., Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann Thorac Surg, 2001. 71: p. 1518–23.

    Article  PubMed  CAS  Google Scholar 

  102. McDonough, J.L., et al., Cardiac troponin I is modified in the myocardium of bypass patients. Circulation, 2001. 103: p. 58–64.

    PubMed  CAS  ISI  Google Scholar 

  103. Overall, C.M. and C. Lopez-Otin, Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2002. 2: p. 657–72.

    Article  PubMed  CAS  Google Scholar 

  104. Lopez-Otin, C. and C.M. Overall, Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol, 2002. 3: p. 509–19.

    PubMed  CAS  Google Scholar 

  105. Bremer, C., C.H. Tung, and R. Weissleder, In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med, 2001. 7: p. 743–8.

    Article  PubMed  CAS  Google Scholar 

  106. Bernardo, M.M., et al., Design, synthesis, and characterization of potent, slow-binding inhibitors that are selective for gelatinases. J Biol Chem, 2002. 277: p. 11201–7.

    Article  PubMed  CAS  Google Scholar 

  107. Glenn, L., Antibiotic use and risk of myocardial infarction. JAMA, 1999. 282: p. 1997.

    PubMed  CAS  ISI  Google Scholar 

  108. Meier, C.R., et al., Antibiotics and risk of subsequent first-time acute myocardial infarction. JAMA, 1999. 281: p. 427–31.

    Article  PubMed  CAS  ISI  Google Scholar 

  109. Golub, L.M., R.A. Greenwald, and R.W. Thompson, Antibiotio use and risk of myocardial infarction. JAMA, 1999. 282: p. 1997–8.

    PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Lalu, M.M., Leon, H., Schulz, R. (2005). Turmoil in the Cardiac Myocyte: Acute Intracellular Activation of Matrix Metalloproteinases. In: Villarreal, F.J. (eds) Interstitial Fibrosis in Heart Failure. Developments in Cardiovascular Medicine, vol 253. Springer, New York, NY. https://doi.org/10.1007/0-387-22825-X_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-22825-X_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22824-2

  • Online ISBN: 978-0-387-22825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics